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Time Series



12 Introduction

This Part is mainly a summary of the book of Brockwell and Davis (2002). Additionally
the textbook Shumway and Stoffer (2010) can be recommended.1

Our purpose is to study techniques drawing inferences from time series. Before we
can do this, it is necessary to set up a hypothetical probability model to represent the
data. After an appropriate family of models has been chosen, it is then possible to
estimate parameters, check for goodness of fit to the data, and possibly to use the fitted
model to enhance our understanding of the mechanism generating the series. Once a
satisfactory model has been developed, it may be used in a variety of ways depending
on the particular field of application.

12.1 Definitions and Examples

Definition 12.1.1. A time series is a set of observations xt each one being recorded at a
specific time t. A discrete time series is one in which the set T0 of times at which observa-
tions are made is a discrete set. Continuous time series are obtained when observations
are recorded continuously over some time interval.

Example. Some examples of discrete univariate time series from climate sciences and
energy markets are shown on pages 12-2 to 12-4.

Example (Basel, p. 1-6). We come back to the Basel temperature time series which
starts in 1755 and is the longest temperature time series in Switzerland. We will analyze
this data set and try to find an adequate time series model. To get an overview we
start with Figure 12.4 showing the annual mean temperatures from 1755 to 2010. With
a boxplot (see Figure 12.5, p. 12-6) the monthly variability, called seasonality, but also
the intermonthly variability can be shown. Finally Figure 12.6, p. 12-7, shows the
monthly temperature time series from 1991 to 2010.

An important part of the analysis of a time series is the selection of a suitable
probability model for the data. To allow for the possibly unpredictable nature of future
observations it is natural to suppose that each observation xt is a realized value of a
certain random variable Xt.

Definition 12.1.2. A time series model for the observed data {xt} is a specification
of the joint distribution (or possibly only the means and covariances) of a sequence of
random variables {Xt} of which {xt} is postulated to be a realization.

Remark. We shall frequently use the term time series to mean both the data and the
process of which it is a realization. A complete probabilistic time series model for the

1http://www.stat.pitt.edu/stoffer/tsa3/ (12.04.2015).
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Figure 12.1: Global development of the atmospheric CO2 concentration, annual mean
temperature and sea level from 1850 to 2010. Source: OcCC (2008).
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Figure 12.2: Time series from 1864 to 2014 of the anomalies from the reference period
1961-1990 of the annual mean temperature in Switzerland (top) and the precipitation
in Southern Switzerland (bottom). Source: MeteoSchweiz.
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Figure 12.3: Top: Energy demand in Switzerland from 1910 to 2013. Source: Swiss
Federal Office of Energy (2013). Bottom: Brent Crude oil prices from 2000 to 2014 in
USD per barrel. Source: www.finanzen.ch.
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Figure 12.4: Basel annual mean temperature time series from 1755 to 2010. Data set:
Basel, p. 1-6.

sequence or random variables {X1, X2, . . .} would specify all of the joint distributions of
the random vectors (X1, . . . , Xn)′, n = 1, 2, . . ., or equivalently all of the probabilities

P (X1 ≤ x1, . . . , Xn ≤ xn), −∞ < x1, . . . , xn <∞, n = 1, 2, . . . .

Such a specification is rarely used in time series analysis, since in general it will contain
far too many parameters to be estimated from the available data. Instead we specify only
the first- and second order moments of the joint distributions, i.e., the expected values
EXt and the expected products E(Xt+hXt), t = 1, 2, . . ., h = 0, 1, . . ., focusing on the
properties of the sequence {Xt} that depend only on these. Such properties are referred
as second-order properties. In the particular case where all the joint distributions are
multivariate normal, the second-order properties of {Xt} completely determine the joint
distributions and hence give a complete probabilistic characterization of the sequence.

Definition 12.1.3. {Xt} is a Gaussian time series if all of its joint distributions are
multivariate normal, i.e., if for any collection of integers i1, . . . , in, the random vector
(Xi1 , . . . , Xin)′ has a multivariate normal distribution.
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Figure 12.5: Boxplot of the Basel monthly mean temperature time series from 1755 to
2010. Data set: Basel, p. 1-6.

12.2 Simple Time Series Models

12.2.1 Zero-mean Models

We introduce some important time series models.

� Independent and identically distributed (iid) noise: Perhaps the simplest model
for a time series is one in which there is no trend or seasonal component and
in which the observations are simply independent and identically distributed (iid)
random variables with zero mean. We refer to such a sequence of random variables
X1, X2, . . . as iid noise. By definition we can write, for any positive integer n and
real numbers x1, . . . , xn,

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) · . . . · P (Xn ≤ xn) = F (x1) · · ·F (xn),

where F (·) is the cumulative distribution function of each of the identically dis-
tributed random variables X1, X2, . . .. In this model there is no dependence be-
tween observations. In particular, for all h ≥ 1 and all x, x1, . . . , xn,

P (Xn+h ≤ x|X1 = x1, . . . , Xn = xn) = P (Xn+h ≤ x),

showing that knowledge of X1, . . . , Xn is of no value for predicting the behavior of
Xn+h.
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Figure 12.6: Basel monthly mean temperature time series from 1991 to 2010. Data set:
Basel, p. 1-6.

Remark. We shall use the notation

{Xt} ∼ IID(0, σ2)

to indicate that the random variables Xt are independent and identically dis-
tributed random variables, each with mean 0 and variance σ2.

Although iid noise is a rather uninteresting process for forecasting, it plays an
important role as a building block for more complicated time series models.

� Binary process: Consider the sequence of iid random variables {Xt, t = 1, 2, . . .}
with

P (Xt = 1) = p, P (Xt = −1) = 1− p,
where p = 1/2.

� Random walk: The random walk {St, t = 0, 1, 2, . . .} is obtained by cumulatively
summing iid random variables. Thus a random walk with zero mean is obtained
by defining

S0 = 0 and St = X1 + . . .+Xt for t = 1, 2, . . . ,

where {Xt} is iid noise.
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Example. Figure 12.7 shows different examples of zero-mean time series models.

12.2.2 Models with Trend and Seasonality

In several of the time series there is a clear trend in the data. In these cases a zero-mean
model for the data is clearly inappropriate.

� Trend: Xt = mt + Yt, where mt is a slowly changing function known as the trend
component and Yt has zero mean. A useful technique for estimating mt is the
method of least squares.

Example. In the least squares procedure we attempt to fit a parametric family
of functions, e.g., mt = a0 + a1t + a2t

2 to the data {x1, . . . , xn} by choosing the
parameters a0, a1 and a2 to minimize

n∑

t=1

(xt −mt)
2

� Seasonality: In order to represent a seasonal effect, allowing for noise but assuming
no trend, we can use the simple model

Xt = st + Yt,

where st is a periodic function of t with period d, i.e., st−d = st.

Example. A convenient choice for st is a sum of harmonics given by

st = a0 +
k∑

j=1

(aj cos(λjt) + bj sin(λjt))

where a0, . . . , ak and b1, . . . , bk are unknown parameters and λ1, . . . , λk are fixed
frequencies, each being some integer multiple of 2π/d.

12.3 General Approach to Time Series Modeling

The examples of the previous section illustrate a general approach to time series anal-
ysis. Before introducing the ideas of dependence and stationarity, the following outline
provides the reader with an overview of the way in which the various ideas fit together:

1. Plot the series and examine the main features of the graph, checking in particular
whether there is

(a) a trend,

(b) a seasonal component,

12-8



time

v
a
lu

e

-1
.0

0
.0

1
.0

0 12 24 36 48 60 72 84 96

Binary Process Time Series

Lag

A
C

F

0 5 10 15 20 25

0
.0

0
.4

0
.8

Autocorrelation function (ACF)

Lag

P
a
rt

ia
l 
A

C
F

0 5 10 15 20 25

-0
.0

5
0
.0

5

Partial autocorrelation function (PACF)

time

v
a
lu

e

-1
0

-5
0

0 12 24 36 48 60 72 84 96

Random Walk with Binary Process

Lag

A
C

F

0 5 10 15 20 25

0
.0

0
.4

0
.8

Autocorrelation function (ACF)

Lag

P
a
rt

ia
l 
A

C
F

0 5 10 15 20 25

0
.0

0
.4

0
.8

Partial autocorrelation function (PACF)

time

v
a
lu

e

-1
0

1
2

0 12 24 36 48 60 72 84 96

IID Normal Time Series

Lag

A
C

F

0 5 10 15 20 25

0
.0

0
.4

0
.8

Autocorrelation function (ACF)

Lag

P
a
rt

ia
l 
A

C
F

0 5 10 15 20 25

-0
.1

0
0
.0

Partial autocorrelation function (PACF)

time

v
a
lu

e

-2
0

2
4

0 12 24 36 48 60 72 84 96

Random Walk with IID Normal

Lag

A
C

F

0 5 10 15 20 25

0
.0

0
.4

0
.8

Autocorrelation function (ACF)

Lag

P
a
rt

ia
l 
A

C
F

0 5 10 15 20 25

0
.0

0
.4

0
.8

Partial autocorrelation function (PACF)

Figure 12.7: Examples of elementary time series models. The left column shows an
excerpt (m = 96) of the whole time series (n = 480).
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(c) any apparent sharp changes in behavior,

(d) any outlying observations.

Example (Basel, p. 1-6). The Basel annual mean temperature time series (Figure
12.4, p. 12-5) does not have an obvious trend for the first period till 1900 while
for the second period, starting with the 20th century a linear upward trend can be
observed. Furthermore the Basel monthly mean temperature time series (Figure
12.5, p. 12-6) shows a strong seasonal component.

2. Remove the trend and seasonal components to get stationary residuals (see Section
12.4). To achieve this goal it may sometimes be necessary to apply a preliminary
transformation to the data. There are several ways in which trend and seasonality
can be removed (see Section 12.5).

3. Choose a model to fit the residuals.

4. Forecasting will be achieved by forecasting the residuals and then inverting the
transformations described above to arrive at forecasts of the original series {Xt}.

12.4 Stationary Models and the Autocorrelation Func-

tion

Loosely speaking, a time series {Xt, t = 0,±1,±2, . . .} is said to be stationary if it has
statistical properties similar to those of the “time-shifted” series {Xt+h, t = 0,±1,±2, . . .},
for each integer h. So stationarity implies that the model parameters do not vary with
time. Restricting attention to those properties that depend only on the first- and second-
order moments of {Xt}, we can make this idea precise with the following definitions.

Definition 12.4.1. Let {Xt} be a time series with E(X2
t ) <∞. The mean function of

{Xt} is
µX(t) = E(Xt).

The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs) = E((Xr − µX(r))(Xs − µX(s)))

for all integers r and s.

Definition 12.4.2. {Xt} is (weakly) stationary if

� the mean value function µX(t) is constant and does not depend on time t and

� the autocovariance function γX(r, s) depends on r and s only through their differ-
ence |r − s|, or in other words γX(t+ h, t) is independent of t for each h.
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Remark. A strictly stationary time series is one for which the probabilistic behavior
of every collection of values {x1, . . . xn} is identical to that of the time shifted set
{x1+h, . . . xn+h}. That is, strict stationarity of a time series {Xt, t = 0,±1,±2, . . .}
is defined by the condition that (X1, . . . , Xn) and (X1+h, . . . , Xn+h) have the same joint
distributions for all integers h and n > 0. It can be checked that if {Xt} is strictly
stationary and EX2

t < ∞ for all t, then {Xt} is also weakly stationary. Whenever we
use the term stationary we shall mean weakly stationary as in Definition 12.4.2.

Remark. If a Gaussian time series is weakly stationary it is also strictly stationary.

Remark. Whenever we use the term covariance function with reference to a stationary
time series {Xt} we define

γX(h) := γX(h, 0) = γX(t+ h, t).

The function γX(·) will be referred to as the autocovariance function and γX(h) as its
value at lag h.

Definition 12.4.3. Let {Xt} be a stationary time series. The autocovariance function
(ACFV) of {Xt} at lag h is

γX(h) = Cov(Xt+h, Xt) = E(Xt+hXt)− EXt+hEXt.

The autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) :=
γX(h)

γX(0)
= Cor(Xt+h, Xt).

Example. Let’s have a look to some zero-mean time series models (compare Figure
12.7):

� iid noise: If {Xt} is iid noise and E(X2
t ) = σ2 < ∞, then the first requirement of

Definition 12.4.2 is satisfied since E(Xt) = 0, for all t. By the assumed indepen-
dence

γX(t+ h, t) =

{
σ2, if h = 0,

0, if h 6= 0.

which does not depend on t. Hence iid noise with finite second moment is station-
ary. We shall use the notation

{Xt} ∼ IID(0, σ2)

to indicate that the random variables Xt are independent and identically dis-
tributed random variables, each with mean 0 and variance σ2.

� White noise: If {Xt} is a sequence of uncorrelated random variables, each with zero
mean and variance σ2, then {Xt} is stationary with the same covariance function
as the iid noise. Such a sequence is referred to as white noise (with mean 0 and
variance σ2). This is indicated by the notation

{Xt} ∼WN(0, σ2).
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Remark. Every IID(0, σ2) sequence is WN(0, σ2) but not conversely: Let {Zt} ∼
N(0, 1) and define

Xt =

{
Zt, t even,

(Z2
t−1 − 1)/

√
2, t odd,

then {Xt} ∼WN(0, 1) but not IID(0, 1).

� Random walk: We find ESt = 0, ES2
t = tσ2 <∞ for all t, and, for h ≥ 0,

γS(t+ h, t) = Cov(St+h, St) = tσ2.

Since γS(t+ h, t) depends on t, the series {St} is not stationary.

Example. Figure 12.8 shows different examples of time series models with trend and
seasonal components.

Example. First-order moving average or MA(1) process: Consider the series defined by
the equation

Xt = Zt + θZt−1, t = 0,±1,±2, . . . , (12.1)

where {Zt} ∼WN(0, σ2) and θ is a real-valued constant. We find EXt = 0 and EX2
t =

σ2(1 + θ2) <∞. The autocovariance function can be calculated as

γX(t+ h, t) =





σ2(1 + θ2), if h = 0,

σ2θ, if h = ±1,

0, if |h| > 1.

(12.2)

Therefore {Xt} is stationary.

Example. Note that the processes Xt = Zt + 5Zt−1, where {Zt} ∼ WN(0, 1) and
Yt = Wt + 1

5
Wt−1, where {Wt} ∼ WN(0, 25) have the same autocovariance functions.

Since we can only observe the time series Xt or Yt and not the noise Zt or Wt we
cannot distinguish between the models. But as we will see later on, the second model is
invertible, while the first is not.

Example. First-order autoregression or AR(1) process: Let us assume that the series
{Xt} defined by the equation

Xt = φXt−1 + Zt, t = 0,±1,±2, . . . , (12.3)

is stationary, where {Zt} ∼ WN(0, σ2), Zt is uncorrelated with Xs for each s < t and
|φ| < 1.

By taking expectations on each side of (12.3) and using the fact that EZt = 0, we
see at once that EXt = 0. To find the autocovariance function of {Xt} multiply each
side of (12.3) by Xt−h and then take expectations to get

γX(h) = Cov(Xt, Xt−h) = Cov(φXt−1, Xt−h) + Cov(Zt, Xt−h)

= φγX(h− 1) = . . . = φhγX(0).
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Figure 12.8: Examples of time series models with trend and seasonal components. The
left column shows an excerpt (m = 96) of the whole time series (n = 480).
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Observing that γ(h) = γ(−h), we find that

ρX(h) =
γX(h)

γX(0)
= φ|h|, h = 0,±1, . . . .

It follows from the linearity of the covariance function and the fact that Zt is uncorrelated
with Xt−1 that

γX(0) = Cov(Xt, Xt) = Cov(φXt−1 + Zt, φXt−1 + Zt) = φ2γX(0) + σ2

and hence that

γX(0) =
σ2

1− φ2
.

Combined we have

γX(h) = φ|h|
σ2

1− φ2
.

For more details on AR(1) processes see page 13-6.

Definition 12.4.4. Let x1, . . . , xn be observations of a time series. The sample mean
of x1, . . . , xn is

x =
1

n

n∑

j=1

xj.

For |h| < n we define the sample autocovariance function

γ̂(h) :=
1

n

n−|h|∑

j=1

(xj+|h| − x)(xj − x),

and the sample autocorrelation function

ρ̂(h) =
γ̂(h)

γ̂(0)
.

Remark. For data containing a trend, |ρ̂(h)| will exhibit slow decay as h increases, and
for data with a substantial deterministic periodic component, |ρ̂(h)| will exhibit similar
behavior with the same periodicity (see Figure 12.8). Thus ρ̂(·) can be useful as an
indicator of nonstationarity.

Example (Basel, p. 1-6). Figure 12.9 shows the Basel monthly mean temperatures from
1900 to 2010 with the corresponding autocorrelation function and partial autocorrelation
function (definition see Section 14.3, p. 14-7). The waves of the autocorrelation plot are
a typical indication for a seasonal dependency within the time series. Since the seasonal
component is very strong the trend component can not be detected.
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Figure 12.9: Basel monthly mean temperature time series from 1900 to 2010 with corre-
sponding autocorrelation function and partial autocorrelation function. Data set: Basel,
p. 1-6.

12.5 Estimation and Elimination of Trend and Sea-

sonal Components

The first step in the analysis of any time series is to plot the data. If there are any
apparent discontinuities in the series, such as a sudden change of level, it may be advis-
able to analyze the series by first breaking it into homogeneous segments. If there are
outlying observations, they should be studied carefully to check whether there is any
justification for discarding them. Inspection of a graph may also suggest the possibility
of representing the data as a realization of the classical decomposition model

Xt = mt + st + Yt, (12.4)

where mt is a slowly changing function known as a trend component, st is a function
with known period d referred as a seasonal decomposition, and Yt is a random noise
component that is stationary. If the seasonal and noise fluctuations appear to increase
with the level of the process, then a preliminary transformation of the data is often used
to make the transformed data more compatible with the model (12.4).
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Our aim is to estimate and extract the deterministic components mt and st in the
hope that the residual or noise component Yt will turn out to be a stationary time series
(method 1). We can then use the theory of such processes to find a satisfactory proba-
bilistic model for the process Yt, to analyze its properties, and to use it in conjunction
with mt and st for purposes of prediction and simulation of {Xt}.

Another approach is to apply differencing operators repeatedly to the series {Xt}
until the differenced observations resemble a realization of some stationary time series
{Wt} (method 2). We can then use the theory of stationary processes for the modeling,
analysis, and prediction of {Wt} and hence of the original process.

12.5.1 Nonseasonal Model with Trend

In the absence of a seasonal component the model (12.4) becomes

Xt = mt + Yt, t = 1, . . . , n, (12.5)

where EYt = 0.

Method 1: Trend estimation

A lot of methods can be found in literature, here some examples.

a) Smoothing with a finite moving average filter. Let q be a non-negative integer and
consider the two-sided moving average

Wt = (2q + 1)−1
q∑

j=−q

Xt−j

of the process {Xt} defined in (12.5). Then for q + 1 ≤ t ≤ n− q, we find

Wt = (2q + 1)−1
q∑

j=−q

mt−j + (2q + 1)−1
q∑

j=−q

Yt−j ≈ mt,

assuming that mt is approximately linear over the interval [t−q, t+q] and that the
average of the error terms over this interval is close to zero. The moving average
thus provides us with the estimates

m̂t = (2q + 1)−1
q∑

j=−q

Xt−j, q + 1 ≤ t ≤ n− q. (12.6)

b) Exponential smoothing. For any fixed α ∈ [0, 1], the one-sided moving averages
m̂t, t = 1, . . . , n, are defined by the recursions

m̂t = αXt + (1− α)m̂t−1, t = 2, . . . , n,

and

m̂1 = X1.
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c) Smoothing by eliminating high-frequency components.

d) Polynomial fitting. This method can be used to estimate higher-order polynomial
trends.

Method 2: Trend Elimination by Differencing

The trend term is eliminated by differencing. We define the lag-1 difference operator ∇
by

∇Xt = Xt −Xt−1 = (1−B)Xt,

where B is the backward shift operator,

BXt = Xt−1.

Powers of the operators B and ∇ are defined in the obvious way, i.e.,

Bj(Xt) = Xt−j,

∇j(Xt) = ∇(∇j−1(Xt)), j ≥ 1, with ∇0(Xt) = Xt.

Example. If the time series {Xt} in (12.5) has a polynomial trend of degree k, it can
be eliminated by application of the operator ∇k:

∇kXt = k! ck +∇kYt,

which gives a stationary process with mean k! ck.

12.5.2 Seasonal Model with Trend

The methods described for the estimation and elimination of trend can be adapted in a
natural way to eliminate both trend and seasonality in the general model, specified as
follows.

Xt = mt + st + Yt, t = 1, . . . , n

where

EYt = 0, st+d = st,
d∑

j=1

sj = 0.

Method 1: Estimation of trend and seasonal component

Suppose we have observations {x1, . . . , xn}. The trend is first estimated by applying
a moving average filter specially chosen to eliminate the seasonal component and to
dampen the noise. If the period d is even, say d = 2q, then we use

m̂t = (0.5xt−q + xt−q+1 + . . .+ xt+q−1 + 0.5xt+q)/d, q < t ≤ n− q.
If the period is odd, say d = 2q + 1, then we use the simple moving average (12.6). The
second step is to estimate the seasonal component.

12-17



Method 2: Elimination of trend and seasonal components by differencing

The technique of differencing that was applied to nonseasonal data can be adapted
to deal with seasonality of period d by introducing the lag-d differencing operator ∇d

defined by
∇dXt = Xt −Xt−d = (1−Bd)Xt.

Applying the operator ∇d to the model

Xt = mt + st + Yt,

where {st} has period d, we obtain

∇dXt = mt −mt−d + Yt − Yt−d,
which gives a decomposition of the difference ∇dXt into a trend component (mt−mt−d)
and a noise term (Yt − Yt−d). The trend, mt −mt−d, can then be eliminated using the
methods already described, in particular by applying a power of the operator ∇.

Example (Basel, p. 1-6). Figure 12.10 shows the Basel monthly mean temperature time
series from 1900 to 2010 after eliminating the seasonal component by differencing at lag
12 and the linear trend by differencing at lag 1, with the corresponding autocorrelation
function and partial autocorrelation function. Comparing this figure to Figure 12.9,
p. 12-15, the autocorrelation function plot does not show any waves any longer. But we
see from the autocorrelation function (and partial autocorrelation function) that there
is a negative correlation of the remaining time series at lag 12. This observation is
confirmed by considering the lag-plot (see Figure 12.11).

12.6 Testing the Estimated Noise Sequence

The objective of the data transformations described in Section 12.5 is to produce a
series with no apparent deviations from stationarity, and in particular with no apparent
trend or seasonality. Assuming that this has been done, the next step is to model the
estimated noise sequence (i.e., the residuals obtained either by differencing the data
or by estimating and subtracting the trend and seasonal components). If there is no
dependence among between these residuals, then we can regard them as observations of
independent random variables, and there is no further modeling to be done except to
estimate their mean and variance. However, if there is significant dependence among the
residuals, then we need to look for a more complex stationary time series model for the
noise that accounts for the dependence. This will be to our advantage, since dependence
means in particular that past observations of the noise sequence can assist in predicting
future values.

In this section we examine some tests for checking the hypothesis that the residuals
from Section 12.5 are observed values of independent and identically distributed random
variables. If they are, then our work is done. If not, the theory of stationary processes
(see Chapter 13) must be used to find a more appropriate model. An overview of some
tests:
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Figure 12.10: Basel monthly mean temperature time series from 1900 to 2010 after differ-
encing at lag 12 for eliminating the seasonal component and at lag 1 for eliminating the
linear trend with the corresponding autocorrelation function and partial autocorrelation
function.

a) Sample autocorrelation function (SACF): For large n, the SACF of an iid sequence
Y1, . . . , Yn with finite variance are approximately iid with N(0, 1/n). Hence, if
y1, . . . , yn is a realization of such an iid sequence, about 95% of the sample auto-
correlations should fall between the bounds ±1.96/

√
n. If we compute the sample

autocorrelations up to lag 40 and find that more than two or three values fall out-
side the bounds, or that one value falls far outside the bounds, we therefore reject
the iid hypothesis.

b) Portmanteau test: Consider the statistic

Q = n
h∑

j=1

ρ̂2(j)

where ρ̂ is the sample autocorrelation function. If Y1, . . . , Yn is a finite-variance iid
sequence, then Q is approximately distributed as the sum of squares of the inde-
pendent N(0, 1) random variables,

√
nρ̂(j), j = 1, . . . , h, i.e., as chi-squared with
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Figure 12.11: Lag-plot of the Basel monthly mean temperature time series from 1900 to
2010 after differencing at lag 12 for eliminating the seasonal component and at lag 1 for
eliminating the linear trend.

h degrees of freedom. A large value of Q suggests that the sample autocorrelations
of the data are too large for the data to be a sample from an iid sequence. We
therefore reject the iid hypothesis at level α if Q > χ2

1−α(h), where χ2
1−α(h) is the

1− α quantile of the chi-squared distribution with h degrees of freedom.

There exists a refinement of this test, formulated by Ljung and Box, in which Q
is replaced by

QLB = n(n+ 2)
h∑

j=1

ρ̂2(j)

n− j ,

whose distribution is better approximated by the chi-squared distribution with h
degrees of freedom.

Example (Basel, p. 1-6). Figure 17.1, p. 17-3, shows the Ljung-Box test for the
residuals of the Basel monthly mean temperature time series.

c) The turning point test: If y1, . . . , yn is a sequence of observations, we say that
there is a turning point at time i, if yi−1 < yi and yi > yi+1 or if yi−1 > yi and
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yi < yi+1. If T is the number of turning points of an iid sequence of length n, then,
since the probability of a turning point at time i is 2/3, the expected value of T is

µT = E(T ) =
2

3
(n− 2).

It can be shown for an iid sequence that the variance of T is

σ2
T = Var(T ) =

16n− 29

90
.

A large value of T − µT indicates that the series is fluctuating more rapidly than
expected for an iid sequence. On the other hand, a value T − µT much smaller
than zero indicates a positive correlation between neighboring observations. For
an iid sequence with n large, it can be shown that

T
approx∼ N(µT , σ

2
T ).

This means we carry out a test of the iid hypothesis, rejecting it at level α if
|T − µT |/σT > Φ1−α/2, where Φ1−α/2 is the 1 − α/2 quantile of the standard
normal distribution.

d) The difference-sign test: For this test we count the number S of values of i such
that yi > yi−1, i = 2, . . . , n, or equivalently the number of times the differenced
series yi − yi−1 is positive. For an iid sequence we see that

µS =
n− 1

2
and σ2

S =
n+ 1

12
,

and for large n,
S

approx∼ N(µS, σ
2
S).

A large positive (or negative) value of S−µS indicates the presence of an increasing
(or decreasing) trend in the data. We therefore reject the assumption of no trend
in the data if |S − µS|/σS > Φ1−α/2. The difference-sign test must be used with
caution. A set of observations exhibiting a strong cyclic component will pass the
difference-sign test for randomness, since roughly half of the observations will be
points of increase.

e) The rank test: This test is particularly useful for detecting a linear trend in the
data. Define P to be the number of pairs (i, j) such that yj > yi and j > i,
i = 1, . . . , n − 1. The mean of P is µp = 1

4
n(n − 1). A large positive (negative)

value of P − µP indicates the presence of an increasing (decreasing) trend in the
data.

Remark. The general strategy in applying the tests is to check them all and to proceed
with caution if any of them suggests a serious deviation from the iid hypothesis.
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