
15 Forecasting Time Series

15.1 Forecasting Stationary Time Series

We investigate the problem of predicting the values Xn+h, h > 0, of a stationary time
series with known mean µ and autocovariance function γ in terms of {Xn, . . . , X1}. Our
goal is to find the linear combination of 1, Xn, Xn−1, . . . , X1, that forecasts Xn+h with
minimum mean squared error. The best linear predictor will be denoted by PnXn+h and
clearly has the form

PnXn+h = a0 + a1Xn + . . .+ anX1.

It remains to determine the coefficients a0, . . . , an, by finding the values that minimize

S(a0, . . . , an) = E(Xn+h − a0 − a1Xn − . . .− anX1)
2.

Since S is a quadratic function of a0, . . . , an and is bounded below by zero, it is clear
that there is at least one value of (a0, . . . , an) that minimizes S and that the minimum
satisfies

∂S(a0, . . . , an)

∂aj
= 0, j = 0, . . . , n.

Evaluation of the derivatives gives the equivalent equations

E

[
Xn+h − a0 −

n∑

i=1

aiXn+1−i

]
= 0, (15.1)

E

[(
Xn+h − a0 −

n∑

i=1

aiXn+1−i

)
Xn+1−j

]
= 0, j = 1, . . . , n. (15.2)

These equations can be written as

a0 = µ

(
1−

n∑

i=1

ai

)
, (15.3)

Γnan = γn(h), (15.4)

where an = (a1, . . . , an)′, Γn := [γ(i− j)]ni,j=1 and γn(h) := (γ(h), . . . , γ(h+ n− 1))′.

Proposition 15.1.1. The the best linear predictor PnXn+h is

PnXn+h = µ+
n∑

i=1

ai(Xn+1−i − µ), (15.5)

where an satisfies (15.4). From (15.5) the expected value of the prediction error Xn+h−
PnXn+h is zero, and the mean square prediction error is therefore

E(Xn+h − PnXn+h)
2 = γ(0)− an

′γn(h),

where an = (a1, . . . , an)′ and γn(h) := (γ(h), . . . , γ(h+ n− 1))′ .
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Remark. If {Yt} is a stationary time series with mean µ and if {Xt} is the zero-mean
series defined by Xt = Yt − µ, then PnYn+h = µ + PnXn+h. So from now on, we can
restrict attention to zero-mean stationary time series.

Example. Consider the time series

Xt = φXt−1 + Zt, t = 0,±1, . . . ,

where |φ| < 1 and Zt ∼ WN(0, σ2). The best linear predictor of Xn+1 in terms of
{1, Xn, . . . , X1} is

PnXn+1 = a′nXn,

where Xn = (Xn, . . . , X1)
′ and




1 φ . . . φn−1

φ 1 . . . φn−2

...
...

. . .
...

φn−1 φn−2 . . . 1







a1

a2
...

an




=




φ

φ2

...

φn



.

A solution is clearly
an = (φ, 0, . . . , 0)′,

and hence the best linear predictor of Xn+1 in terms of {X1, . . . , Xn} is

PnXn+1 = a′nXn = φXn,

with mean squared error

E(Xn+1 − PnXn+1)
2 = γ(0)− a′nγn(1) =

σ2

1− φ2
− φγ(1) = σ2.

Remark. If {Xt} is a zero-mean stationary series with autocovariance function γ(·), then
in principle determining the best linear predictor PnXn+h in terms of {Xn, . . . , X1} is
possible. However, the direct approach requires the determination of a solution of a
system of n linear equations, which for large n may be difficult and time-consuming.
Therefore it would be helpful if the one-step predictor PnXn+1 based on the n previous
observations could be used to simplify the calculation of Pn+1Xn+2, the one-step predic-
tor based on n+1 previous observations. Prediction algorithms that utilize this idea are
said to be recursive. The algorithms to be discussed in this chapter allow us to compute
best predictors without having to perform any matrix inversions.

Remark. There are two important recursive prediction algorithms:

� Durbin-Levinson algorithm: Section 15.1.1 and Brockwell and Davis (2002) pp. 69-
71.

� Innovations algorithm: Section 15.1.2, Section 16.1.3, Brockwell and Davis (2002)
pp. 71-75 and pp. 150-156.
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15.1.1 Durbin-Levinson Algorithm

From Proposition 15.1.1 we know that if the matrix Γn is nonsingular, then

PnXn+1 = φ′nXn = φn1Xn + . . .+ φnnX1, (15.6)

where
φn = Γ−1n γn, γn = (γ(1), . . . , γ(n))′

and the corresponding mean squared error is

νn := E(Xn+1 − PnXn+1)
2 = γ(0)− φn

′γn.

A useful sufficient condition for nonsingularity of all the autocovariance matrices Γ1,Γ2, . . .
is γ(0) > 0 and γ(h) → 0 as h → ∞. The coefficients φn1, . . . , φnn can be computed
recursively with the Durbin-Levinson algorithm (see Figure 15.1).

Figure 15.1: Algorithm for estimating the parameters φn = (φn1, . . . , φnn) in a pure
autoregressive model. Source: Brockwell and Davis (2002), p. 70.

15.1.2 Innovations Algorithm

The recursive algorithm to be discussed in this section is applicable to all series with
finite second moments, regardless of whether they are stationary or not. Its application,
however, can be simplified in certain special cases.
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Proposition 15.1.2. Suppose that {Xt} is a zero-mean series with E|Xt|2 < ∞ for
each t and E(XiXj) = κ(i, j), where the matrix [κ(i, j)]ni,j=1 is non-singular for each
n = 1, 2, . . ., then the one-step predictor is given by

X̂n+1 =





0, n = 0,
n∑

j=1

θnj(Xn+1−j − X̂n+1−j), n ≥ 1,

from which the one-step predictors X̂1, X̂2, . . . can be computed recursively once the co-
efficients θij have been determined. The innovations algorithm (Figure 15.2) generates

these coefficients and the mean squared errors νi = E(Xi+1 − X̂i+1)
2, starting from the

covariances κ(i, j).

Figure 15.2: Innovations algorithm for estimating the parameters θn = (θn1, . . . , θnn).
Source: Brockwell and Davis (2002), p. 73.

Example. If {Xt} is the MA(1) process

Xt = Zt + θZt−1, {Zt} ∼WN(0, σ2),

then κ(i, j) = 0 for |i − j| > 1, κ(i, i) = σ2(1 + θ2) and κ(i, i + 1) = θσ2. Using the
innovations algorithm (see Figure 15.2) we find

ν0 = σ2(1 + θ2),

θn1 = σ2ν−1n−1θ,

θnj = 0, 2 ≤ j ≤ n,
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and

νn = σ2[1 + θ2 − ν−1n−1θ2σ2].

If we define rn = νn/σ
2, then we can write

X̂n+1 =
θ(Xn − X̂n)

rn−1
,

where r0 = 1 + θ2 and rn+1 = 1 + θ2 − θ2/rn.

15.2 Forecasting ARMA Processes

The innovations algorithm is a recursive method for forecasting second-order zero-mean
processes that are not necessarily stationary. Proposition 15.1.2 can of course be applied
directly to the prediction of the causal ARMA process,

φ(B)Xt = θ(B)Zt, {Zt} ∼WN(0, σ2).

However a drastic simplification in the calculations can be achieved, if, instead of
applying Proposition 15.1.2 to {Xt}, we apply it to the transformed process

Wt =

{
σ−1Xt, t = 1, . . . ,m,

σ−1φ(B)Xt, t > m,

where m = max(p, q).
For notational convenience we define θ0 := 1, θj := 0 for j > q and assume that

p ≥ 1 and q ≥ 1. The autocovariances κ(i, j) = E(WiWj), i, j ≥ 1, are found from

κ(i, j) =





σ−2γX(i− j), 1 ≤ i, j ≤ m,

σ−2

[
γX(i− j)−

p∑

r=1

φrγX(r − |i− j|)
]
, min(i, j) ≤ m < max(i, j) ≤ 2m,

q∑

r=0

θrθr+|i−j|, min(i, j) > m,

0, otherwise.

(15.7)
Applying the innovations algorithm to the process {Wt} and replacing (Wj− Ŵj) by

σ−1(Xj − X̂j) we finally obtain

X̂n+1 =





n∑

j=1

θnj(Xn+1−j − X̂n+1−j), 1 ≤ n < m = max(p, q),

φ1Xn + . . .+ φpXn+1−p +

q∑

j=1

θnj(Xn+1−j − X̂n+1−j), n ≥ m,

(15.8)
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and
E(Xn+1 − X̂n+1)

2 = σ2 E(Wn+1 − Ŵn+1)
2 = σ2rn,

where θnj and rn are found from the innovations algorithm (see Figure 15.2) with κ as

in (15.7). Equations (15.8) determine the one-step predictors X̂2, X̂3, . . . recursively.

Example. Prediction of ARMA(1, 1) processes. Let

Xt − φXt−1 = Zt + θZt−1, {Zt} ∼WN(0, σ2),

and |φ| < 1, then equations (15.8) reduce to the single equation

X̂n+1 = φXn + θn1(Xn − X̂n), n ≥ 1.

We know that

γX(0) = σ2 1 + 2θφ+ θ2

1− φ2
.

Substituting in (15.7) then gives, for i, j ≥ 1,

κ(i, j) =





1 + 2θφ+ θ2

1− φ2
, i = j = 1,

1 + θ2, i = j ≥ 2,

θ, |i− j| = 1, i ≥ 1,

0, otherwise.

With these values of κ(i, j), the recursions of the innovations algorithm reduce to

r0 =
1 + 2θφ+ θ2

1− φ2
, θn1 =

θ

rn−1
, rn = 1 + θ2 − θ2

rn−1
,

which can be solved quite explicitly.
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16 Modeling with ARMA
Processes

The determination of an appropriate ARMA(p, q) model to represent an observed sta-
tionary time series involves a number of interrelated problems. These include the
choice of p and q (order selection) and the estimation of the mean, the coefficients
{φi, i = 1, . . . , p}, {θi, i = 1, . . . , q} and the white noise variance σ2. Final selection of
the model depends on a variety of goodness of fit tests1, although it can be system-
atized to a large degree by use of criteria such as minimization of the AICC statistic as
discussed in Section 16.2.2.

When p and q are known, good estimators of φ and θ can be found by imagining
the data to be observations of a stationary Gaussian time series and maximizing the
likelihood with respect to the p + q + 1 parameters φ1, . . . , φp, θ1, . . . , θq and σ2. The
estimators obtained by this procedure are known as maximum likelihood estimators
(Section 16.2). The algorithm used to determine the maximum likelihood estimators
requires the specification of initial parameter values with which to begin the search.
The closer the preliminary estimates are to the maximum likelihood estimates, the faster
the search will generally be. To provide these initial values, a number of preliminary
estimation algorithms are available (Section 16.1).

Section 16.3 deals with goodness of fit tests for the chosen model and Chapter 15 with
the use of the fitted model for forecasting. In Section 16.2.2 we discuss the theoretical
basis for some of the criteria used for order selection.

Remark. A good overview for determining an adequate ARMA model to a time series is
given in Chapter 6 in Schlittgen and Streitberg (2001) (in German).

16.1 Preliminary Estimation

We shall consider different techniques for preliminary estimation of the parameters

φ = (φ1, . . . , φp), θ = (θ1, . . . , θq),

and σ2 from observations x1, . . . , xn of the causal ARMA(p, q) process defined by

φ(B)Xt = θ(B)Zt, {Zt} ∼WN(0, σ2). (16.1)

1. Pure autoregressive models:

� Yule-Walker procedure (Section 16.1.1)

� Burg’s procedure (Section 16.1.2)

1Goodness of fit tests are used to judge the adequacy of a given statistical model.

16-1



For pure autoregressive models Burg’s algorithm usually gives higher likelihoods
than the Yule-Walker equations.

2. ARMA(p, q), p, q > 0:

� Innovations algorithm (Section 16.1.3 and Brockwell and Davis (2002), pp. 154–
156)

� Hannan-Rissanen algorithm (Section 16.1.4)

For pure moving-average models the innovations algorithm frequently gives slightly
higher likelihoods than than the Hannan-Rissanen algorithm. For mixed models
the Hannan-Rissanen algorithm is usually more successful in finding causal models
which are required for initialization of the likelihood maximization.

16.1.1 Yule-Walker Equations2

For a pure autoregressive model the causality assumption allows us to write Xt in the
form

Xt =
∞∑

j=0

ψjZt−j where ψ(z) =
∞∑

j=0

ψjz
j =

1

φ(z)
. (16.2)

Multiplying each side of (16.1) by Xt−j, j = 0, . . . , p, taking expectations, and using
(16.2) to evaluate the right-hand side of the first equation, we obtain the Yule-Walker
equations

Γpφ = γp and σ2 = γ(0)− φ′γp,
where Γp is the covariance matrix [γ(i− j)]pi,j=1 and γp = (γ(1), . . . , γ(p))′. These

equations can be used to determine γ(0), . . . , γ(p) from σ2 and φ.
If we replace the covariances γ(j), j = 0, . . . , p by the corresponding sample covari-

ances γ̂(j), we obtain a set of equations for the so-called sample Yule-Walker estimators
φ̂ and σ̂2 of φ and σ2, namely,

Γ̂pφ̂ = γ̂p (16.3)

and

σ̂2 = γ̂(0)− φ̂′γ̂p (16.4)

where
Γ̂p = [γ̂(i− j)]pi,j=1 and γ̂p = (γ̂(1), . . . , γ̂(p))′ .

If γ̂(0) > 0, then Γ̂m is nonsingular for everym = 1, 2, . . ., so we can rewrite equations
(16.3) and (16.4) in the following form:

2Gibert Walker 1868-1958, George Udny Yule 1871-1951.
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Definition 16.1.1 (Sample Yule-Walker equations).

φ̂ =
(
φ̂1, . . . , φ̂p

)′
= R̂

−1
p ρ̂p

and

σ̂2 = γ̂(0)

(
1− ρ̂′pR̂

−1
p ρ̂p

)
,

where

ρ̂p = (ρ̂(1), . . . , ρ̂(p))′ = γ̂p/γ̂(0) and R̂p = Γ̂p/γ̂(0).

Proposition 16.1.2 (Large-sample distribution of Yule-Walker equations). For a large
sample from an AR(p) process

n1/2(φ̂− φ) ∼ Np(0, σ
2Γ−1p ).

Order selection In practice we do not know the true order of the model generating
the data. In fact, it will usually be the case that there is no true AR model, in which
case our goal is simply to find one that represents the data optimally in some sense.
Two useful techniques for selecting an appropriate AR model are given below:

� Some guidance in the choice of order is provided by a large-sample result which
states that if {Xt} is A causal AR(p) process with {Zt} ∼ IID(0, σ2) and if we fit a
model with order m > p using the Yule-Walker equations, then the last component,
φ̂mm, of the vector φ̂m is approximately normally distributed with mean 0 and
variance 1/n. Notice that φ̂mm is exactly the sample partial autocorrelation at lag
m.

Now, we already know that for an AR(p) process the partial autocorrelation func-
tion φmm, m > p, are zero. Therefore, if an AR(p) model is appropriate for the
data, then the values φ̂kk, k > p, should be compatible with observations from
N(0, 1/n). In particular, for k > p, φ̂kk will fall between the bounds ±1.96n−1/2

with probability close to 0.95. This suggests using as a preliminary estimator of p
the smallest value m such that |φ̂kk| < 1.96n−1/2 for k > m.

� A more systematic approach to order selection is to find the values of p and φp
that minimize the AICC statistic

AICC = −2 lnL

(
φp,

S(φp)

n

)
+

2(p+ 1)n

n− p− 2︸ ︷︷ ︸
penalty factor

,

where L is the Gaussian likelihood defined in (16.7) and S is defined in (16.8).
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Proposition 16.1.3. The fitted Yule-Walker AR(m) model is

Xt − φ̂m1Xt−1 − . . .− φ̂mmXt−m = Zt, {Zt} ∼WN(0, ν̂m),

where

φ̂m =
(
φ̂m1, . . . , φ̂mm

)′
= R̂

−1
m ρ̂m

and

ν̂m = γ̂(0)

(
1− ρ̂′mR̂

−1
m ρ̂m

)
.

Remark. For both approaches to order selection we need to fit AR models of gradually
increasing order to our given data. The problem of solving the Yule-Walker equations
with gradually increasing orders has already been encountered in a slightly different
context (see Section 15.1.1. Here we can use exactly the same scheme, the Durbin-
Levinson algorithm, to solve the Yule-Walker equations (16.3) and (16.4).

U nder the assumption that the order p of the fitted model is the correct value, we
can use the asymptotic distribution of φ̂p to derive approximate large-sample confidence
regions for the true coefficient vector φp and for its individual components φpj. Thus,
for large sample-size n the region

{
φ ∈ Rp :

(
φ̂p − φ

)′
Γ̂p

(
φ̂p − φ

)
≤ n−1ν̂pχ

2
1−α(p)

}

contains φp with probability close to (1− α).

Similarly, if ν̂jj is the jth diagonal element of ν̂pΓ̂
−1
p , then for large n the interval

bounded by
φ̂pj ± Φ1−α/2 n

−1/2 ν̂
1/2
jj

contains φpj with probability close to (1− α).

16.1.2 Burg’s algorithm (∼ 1967)

The Yule-Walker coefficients φ̂pi, . . . , φ̂pp are precisely the coefficients of the best linear
predictor ofXp+1 in terms of {Xp, . . . , X1} under the assumption that the autocorrelation
function of {Xt} coincides with the sample autocorrelation function at lags 1, . . . , p.

Burg’s algorithm estimates the partial autocorrelation function {φ11, φ22 . . .} by suc-
cessively minimizing sums of squares of forward and backward one-step prediction errors
with respect to the coefficients φii. Given observations {x1, . . . , xn} of a stationary zero-
mean time series {Xt} we define ui(t), t = i + 1, . . . , n, 0 ≤ i < n, to be the difference
between xn+1+i−t and the best linear estimate of xn+1+i−t in terms of the preceding i
observations. Similarly, we define νi(t), t = i + 1, . . . , n, 0 ≤ i < n, to be the differ-
ence between xn+1−t and the best linear estimate of xn+1−t in terms of the subsequent
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i observations. Then it can be shown that the forward and backward prediction errors
{ui(t)} and {νi(t)} satisfy

u0(t) = ν0(t) = xn+1−t,

ui(t) = ui−1(t− 1)− φiiνi−1(t)
and

νi(t) = νi−1(t)− φiiui−1(t− 1).

The calculation of the estimates of φpp described above and σ2
p is equivalent to solving

the following recursions (i = 1, . . . , p):

Figure 16.1: Algorithm for estimating the parameters φ in a pure autoregressive model.
Source: Brockwell and Davis (2002), p. 148.

Remark. The large-sample distribution of the estimated coefficients for the Burg es-
timators of the coefficients of an AR(p) process is the same as for the Yule-Walker

estimators, namely N(φ, n−1σ2Γ−1p . Although the two methods give estimators with
the same large-sample distributions, for finite sample sizes the Burg model usually has
smaller estimated white noise variance and larger Gaussian likelihood.

For further details and examples see Brockwell and Davis (2002) pp. 147–150.

16.1.3 Innovations algorithm

Just as we can fit autoregressive models of order 1, 2, . . . to the data {x1, . . . , xn} by
applying the Durbin-Levinson algorithm to the sample autocovariances, we can also fit
moving average models

Xt = Zt + θ̂m1Zt−1 + . . .+ θ̂mmZt−m, {Zt} ∼WN(0, ν̂m)

of orders m = 1, 2 . . . by means of the innovations algorithm (see Figure 15.2, p. 15-4).
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Proposition 16.1.4. The fitted innovations MA(m) model is

Xt = Zt + θ̂m1Zt−1 + . . .+ θ̂mmZt−m, {Zt} ∼WN(0, ν̂m),

where θ̂m = (θ̂m1, . . . , θ̂mm) and ν̂m are obtained from the innovations algorithm with the
autocovariance function replaced by the sample autocovariance function.

Order selection Three useful techniques for selecting an appropriate MA model are
given below. The third is more systematic and extends beyond the narrow class of pure
moving-average models.

� We know that for an MA(q) process the autocorrelations ρ(m), m > q, are zero.
Moreover, the sample autocorrelation ρ̂m, m > q, is approximately normally dis-
tributed with mean ρ(m) = 0 and variance

n−1
[
1 + 2ρ2(1) + . . . 2ρ2(q)

]
.

This result enables us to use the graph of ρ̂(m), m = 1, 2, . . . , both to decide
whether or not a given data set can be plausibly modeled by a moving-average
process and also to obtain a preliminary estimate of the order q as the smallest
value of m such that ρ̂(k) is not significantly different from zero for all k > m. For
practical purposes ρ̂(k) is compared to 1.96n−1/2 in absolute value.

� We examine the coefficient vectors θ̂m, m = 1, 2, . . . to be able not only to assess
the appropriateness of a moving-average model and to estimate its order q, but also
to obtain preliminary estimates θ̂m1, . . . , θ̂mq of the coefficients. By inspecting the

estimated coefficients θ̂m1, . . . , θ̂mm for m = 1, 2, . . . and the ratio of each coefficient
estimate θ̂mj to

1.96σj = 1.96n−1/2

(
j−1∑

i=0

θ̂2mi

)1/2

,

we can see which of the coefficient estimates are most significantly different from
zero, estimate for order of the model to be fitted as the largest j for which the
ratio is larger than 1 in absolute value.

� As for autoregressive models, a more systematic approach to order selection for
moving-average models is to find the values of q and θ̂q = (θ̂m1, . . . , θ̂mq)

′ that
minimize the AICC statistic

AICC = −2 lnL

(
θq,

S(θq)

n

)
+

2(q + 1)n

n− q − 2
,

where L is the Gaussian likelihood defined in (16.7) and S is defined in (16.8).
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16.1.4 Hannan-Rissanen algorithm (1982)

The defining equations for a causal AR(p) model have the form of a linear regression
model with coefficient vector φ = (φ1, . . . , φp)

′. This suggests the use of simple least
squares regression for obtaining preliminary parameter estimates when q = 0. Appli-
cation of this technique when q > 0 is complicated by the fact that in the general
ARMA(p, q) equations {Xt} is regressed not only on Xt−1, . . . , Xt−p, but also on the
unobserved quantities Zt−1, . . . , Zt−q. Nevertheless, it is still possible to apply least
squares regression to the estimation of φ and θ by first replacing the unobserved quanti-
ties Zt−1, . . . , Zt−q by estimated values Ẑt−1, . . . , Ẑt−q. The parameters φ and θ are then

estimated by regressing Xt onto Xt−1, . . . , Xt−p, Ẑt−1, . . . , Ẑt−q. These are the main steps
in the Hannan-Rissanen estimation procedure, which we now describe in more detail.

Step 1: A high-order AR(m) model (with m > max(p, q)) is fitted to the data using
the Yule-Walker estimates of Section 16.1.1. If (φ̂m1, . . . , φ̂mm)′ is the vector of estimated
coefficients, then the estimated residuals are computed from the equations

Ẑt = Xt − φ̂m1Xt−1 − . . .− φ̂mmXt−m, t = m+ 1, . . . , n.

Step 2: Once the estimated residuals Ẑt, t = m + 1, . . . , n, have been computed as
in Step 1, the vector of parameters β = (φ′,θ′) is estimated by least squares linear
regression of Xt onto (Xt−1, . . . , Xt−p, Ẑt−1, . . . , Ẑt−q), t = m + 1 + q, . . . , n, i.e., by
minimizing

S(β) =
n∑

t=m+1+q

(Xt − φ1Xt−1 − . . .− φpXt−p − θ1Ẑt−1 − . . .− θqẐt−q)2

with respect to β. This gives the Hannan-Rissanen estimator

β̂ = (Z′Z)−1Z′Xn,

where Xn = (Xm+1+q, . . . , Xn)′ and Z is the (n−m− q)× (p+ q) matrix

Z =




Xm+q Xm+q−1 · · · Xm+q+1−p Ẑm+q · · · Ẑm+1

Xm+q+1 Xm+q · · · Xm+q+2−p Ẑm+q+1 · · · Ẑm+2

...
... · · · ...

... · · · ...

Xn−1 Xn−2 · · · Xn−p Ẑn−1 · · · Ẑn−q



.

The Hannan-Rissanen estimate of the white noise variance is

σ̂2
HR =

S(β̂)

n−m− q .
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16.2 Maximum Likelihood Estimation

Suppose that {Xt} is a Gaussian time series with mean zero and autocovariance function
κ(i, j) = E(XiXj). Let Xn = (X1, . . . , Xn)′ and let X̂n = (X̂1, . . . , X̂n)′, where X̂1 = 0

and X̂j = E(Xj|X1, . . . , Xj−1) = Pj−1Xj, j ≥ 2. Let Γn denote the covariance matrix
Γn = E(XnX

′
n), and assume that Γn is nonsingular.

The likelihood of Xn is

L(Γn) = (2π)−n/2(det Γn)−1/2 exp

(
−1

2
X ′nΓ

−1
n Xn

)
. (16.5)

The direct calculation of det Γn and Γ−1n can be avoided by expressing this in terms
of the one-step predictors X̂j, and their mean squared errors νj−1, j = 1, . . . , n, both of
which are calculated recursively from the innovations algorithm.

It can be shown, that

X ′nΓ
−1
n Xn =

n∑

j=1

(Xj − X̂j)
2

νj−1
,

and

det(Γn) = ν0 · . . . · νn−1.

The likelihood (16.5) of the vector Xn therefore reduces to

L(Γn) = (2π)−n/2(ν0 · . . . · νn−1)−1/2 exp

(
−1

2

n∑

j=1

(Xj − X̂j)
2

νj−1

)
. (16.6)

Remark. Even if {Xt} is not Gaussian, it still makes sense to estimate the unknown
parameters β = (φ1, . . . , φp, θ1, . . . θq)

′ in such a way as to maximize (16.6).
A justification for using maximum Gaussian likelihood estimators of ARMA coef-

ficients is that the large-sample distribution of the estimators is the same for {Zt} ∼
IID(0, σ2), regardless of whether or not {Zt} is Gaussian.

16.2.1 Estimation for ARMA processes

Suppose now that {Xt} is a causal ARMA(p, q) process. Applying the innovations
algorithm ((15.8)) we find the one-step predictors X̂i+1 and the mean squared errors
E(Xi+1 − X̂i+1) = σ2ri. Substituting in the general expression (16.6), we find the
Gaussian likelihood of the vector of observations Xn = (X1, . . . , Xn)′.

Proposition 16.2.1. The Gaussian likelihood for an ARMA(p, q) process:

L(φ,θ, σ2) =
1√

(2πσ2)n r0 · · · rn−1
exp

(
− 1

2σ2

n∑

j=1

(Xj − X̂j)
2

rj−1

)
(16.7)
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with rj = E(Xj+1 − X̂j+1)
2/σ2.

Differentiating lnL(φ,θ, σ2) partially with respect to σ2 and noting that X̂j and rj
are independent of σ2, we find that the maximum likelihood estimators φ̂, θ̂, and σ̂2

satisfy

σ̂2 = n−1S(φ̂, θ̂)

where

S(φ̂, θ̂) =
n∑

j=1

(Xj − X̂j)
2

rj−1
(16.8)

and φ̂, θ̂ are the values of φ,θ that minimize

l(φ,θ) = ln(n−1S(φ,θ)) +
1

n

n∑

j=1

ln rj−1. (16.9)

Remark. Minimization of l(φ,θ) must be done numerically. The search procedure may
be greatly accelerated if we begin with parameter values φ0,θ0 which are close to the
minimum of l. It is for this reason that simple, reasonably good preliminary estimates
of φ,θ are important (see Section 16.1). It is essential to begin the search with a causal
parameter vector φ0 since causality is assumed in the computation of l(φ,θ).

16.2.2 Order selection

Let {Xt} denote the mean-corrected transformed series. The problem now is to find the
most satisfactory ARMA(p, q) model to represent {Xt}. If p and q were known in advance
this would be a straightforward application of the estimation techniques. However this
is usually not the case, so that it becomes necessary also to identify appropriate values
for p and q.

It might appear at first sight that the higher the values of p and q chosen, the better
the fitted model will be. However we must beware of the danger of overfitting, i.e. of
tailoring the fit too closely to the particular numbers observed.

Criteria have been developed, which attempt to prevent overfitting by effectively
assigning a cost to the introduction of each additional parameter.

We choose a biased-corrected form of the Akaike’s AIC criterion, defined for an
ARMA(p, q) model with coefficients φp and θq, by

AICC = −2 lnL

(
φp,θq,

S(φp,θq)

n

)
+

2(p+ q + 1)n

n− p− q − 2
,

where L(φ,θ, σ2) is the likelihood of the data under the Gaussian ARMA model (16.7)
with parameters (φ,θ, σ2) and S(φ,θ) is the residual sum of squares (16.8). We select
the model that minimizes the value of AICC. Intuitively one can think of 2(p + q +
1)n/(n−p−q−2) as a penalty term to discourage over-parameterization. Once a model
has been found which minimizes the AICC value, it must then be checked for goodness
of fit (essentially by checking that the residuals are like white noise) as discussed in
Section 16.3.
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Identification of Mixed Models

The identification of a pure autoregressive or moving average process is reasonably
straightforward using the sample autocorrelation and partial autocorrelation functions,
the preliminary estimators φ̂m and θ̂m and the AICC. On the other hand, for ARMA(p, q)
processes with p and q both non-zero, the sample ACF and PACF are much more diffi-
cult to interpret. We therefore search directly for values of p and q such that the AICC
is minimum. The search can be carried out in a variety of ways, e.g. by trying all (p, q)
values such that p + q = 1, then p + q = 2, etc., or alternatively by using the following
steps:

i) Use maximum likelihood estimation to fit ARMA processes of orders (1, 1), (2, 2), . . .,
to the data, selecting the model which gives the smallest value of the AICC.

ii) Starting from the minimum-AICC ARMA(p, p) model, eliminate one or more co-
efficients (guided by the standard errors of the estimated coefficients), maximize
the likelihood for each reduced model and compute the AICC value.

iii) Select the model with smallest AICC value.

16.3 Diagnostic Checking

Typically the goodness of fit of a statistical model to a set of data is judged by comparing
the observed values with the corresponding predicted values obtained from the fitted
model. If the fitted model is appropriate, then the residuals should behave in a manner
that is consistent with the model.

When we fit an ARMA(p, q) model to a given series we determine the maximum
likelihood estimators φ̂, θ̂, and σ̂2 of the parameters φ, θ, and σ2. In the course of this
procedure the predicted values X̂t(φ̂, θ̂) of Xt based on X1, . . . , Xt−1 are computed for
the fitted model. The residuals are then defined, in the notation of Section 15.2, by

Ŵt =
(Xt − X̂t(φ̂, θ̂))
(
rt−1(φ̂, θ̂)

)1/2 , t = 1, . . . , n.

The properties of the residuals {Ŵt} should be similar to those of the white noise se-
quence

Wt =
(Xt − X̂t(φ,θ))

(rt−1(φ,θ))1/2
, t = 1, . . . , n.

Moreover, E(Wt(φ,θ) − Zt)
2 is small for large t, so that properties of the residuals

{Ŵt} should reflect those of the white noise sequence {Zt} generating the underlying
ARMA(p, q) process. In particular the sequence {Ŵt} should be approximately

� uncorrelated if {Zt} ∼WN(0, σ2),
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� independent if {Zt} ∼ IID(0, σ2), and

� normally distributed if {Zt} ∼ N(0, σ2).

The following diagnostic checks are all based on the expected properties of the resid-
uals under the assumption that the fitted model is correct and that {Zt} ∼ IID(0, σ2).
They are the same tests introduced in Section 12.6.

a) Graph of {Ŵt}: If the fitted model is appropriate, then the graph of the residuals
{Ŵt, t = 1, . . . , n} should resemble that of a white noise sequence.

b) The sample autocorrelation function of the residuals {Ŵt}: We know from Section
12.6 that for large n the sample autocorrelations of an iid sequence Y1, . . . , Yn
with finite variance are approximately iid with distribution N(0, 1/n). We can
therefore test whether or not the observed residuals are consistent with iid noise by
examining the sample autocorrelations of the residuals and rejecting the iid noise
hypothesis if more than two or three out of 40 fall outside the bounds ±1.96/

√
n

or if one falls far outside the bounds.

c) Tests for randomness of the residuals: see Section 12.6.

d) Check for normality: A rough check for normality is provided by visual inspection
of the histogram of the residuals or by a Gaussian-QQ-Plot of the residuals. The
Jarque-Bera statistic

n


 m2

3

6m3
2

+

(
m4

m3
2
− 3
)2

24


 ,

where

mr =
1

n

n∑

j=1

(Yi − Y )r,

is distributed asymptotically as χ2(2) if {Yt} ∼ IID N(µ, σ2). This hypothesis is
rejected if the statistic is sufficiently large.
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Figure 16.2: Summary of the ARMA time series models
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17 Nonstationary and Seasonal
Time Series Models

If the data (a) exhibit no apparent deviations from stationarity and (b) have a rapidly
decreasing autocovariance function, we attempt to fit an ARMA model to the mean-
corrected data using the techniques developed in Chapter 16. Otherwise, we look first
for a transformation of the data that generates a new series with the properties (a) and
(b). This can frequently be achieved by differencing, leading us to consider the class of
ARIMA (autoregressive integrated moving-average) models.

17.1 ARIMA Models

Definition 17.1.1. If d is a non-negative integer, then {Xt} is an ARIMA(p, d, q) process
if

Yt := (1−B)dXt

is a causal ARMA(p, q) process.

Remark. This definition means that {Xt} satisfies a difference equation of the form

φ?(B)Xt ≡ φ(B)(1−B)dXt = θ(B)Zt, {Zt} ∼WN(0, σ2), (17.1)

where φ(z) and θ(z) are polynomials of degrees p and q, respectively, and φ(z) 6= 0 for
|z| ≤ 1. The polynomial φ?(z) has a zero of order d at z = 1. The process {Xt} is
stationary if and only if d = 0, in which case it reduces to an ARMA(p, q) process.

Remark. Notice that if d ≥ 1, we can add an arbitrary polynomial trend of degree (d−1)
to {Xt} without violating the difference equation (17.1). ARIMA models are therefore
useful for representing data with trend.

17.2 SARIMA Models

We have already seen how differencing the series {Xt} at lag s is a convenient way of
eliminating a seasonal component of period s. If we fit an ARMA(p, q) model φ(B)Yt =
θ(B)Zt to the differenced series Yt = (1− Bs)Xt, then the model for the original series
is φ(B)(1 − Bs)Xt = θ(B)Zt. This is a special case of the general seasonal ARIMA
(SARIMA) model defined as follows.

The background idea of the application of SARIMA models can be described in three
steps (see Schlittgen and Streitberg (2001)).

1. The existence of seasonal effects means, that an observation of a specific month
depends on the observations of the same month for past years (e.g. January 2010
depends on January 2009, January 2008 etc.). Considering the observations of the
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same month (data with lag s = 12), these dependency can be modeled with an
ARIMA process: Φ(Bs)(1 − Bs)DXt = Θ(Bs)Ut, where {Xt} is the original time
series, e.g. the Basel monthly mean temperature time series from 1900 to 2010.

2. Ut is not a White-noise process since there is also a dependency of the tempera-
tures between successive months (e.g. January 2010 depends on December 2009,
November 2009 etc.). Therefore these non-seasonal patterns are also modeled with
an ARIMA process: φ(B)(1−B)dUt = θ(B)Zt, where Zt is a white-noise process.

3. Multiplying the first equation with φ(B)(1−B)d and applying the second equation
we get

φ(B)(1−B)dΦ(Bs)(1−Bs)DXt = φ(B)(1−B)dΘ(Bs)Ut = θ(B)Θ(Bs)Zt.

Definition 17.2.1. If d and D are non-negative integers then {Xt} is a

seasonal ARIMA(p, d, q)× (P,D,Q)s process

with period s if the differenced series

Yt := (1−B)d(1−Bs)DXt

is a causal ARMA(p, q) process defined by

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt, {Zt} ∼WN(0, σ2), (17.2)

where

φ(z) = 1− φ1z − . . .− φpzp,
Φ(z) = 1− Φ1z − . . .− ΦP z

P ,

θ(z) = 1 + θ1z + . . .+ θqz
q,

Θ(z) = 1 + Θ1z + . . .+ ΘQz
Q.

Example (Basel, p. 1-6). Since the autocorrelation function of Figure 12.10, p. 12-19,
showed among other things a negative correlation at lag 12 after differencing the Basel
monthly mean temperature time series with (1−B)(1−B12), we will now use a SARIMA
process to find an adequate model. Applying an ARIMA(1, 1, 1) × (1, 1, 1)12 process
results in Figure 17.1 which shows that the residuals are white noise and therefore the
model is appropriate. Finally Table 17.1 shows the results of the parameter estimation.

Remark. Note that the process {Yt} is causal if and only if φ(z) 6= 0 and Θ(z) 6= 0 for
|z| ≤ 1. In applications D is rarely more than one, and P and Q are typically less than
three.
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Figure 17.1: Residuals of the Basel monthly mean temperature time series from 1900 to
2010 after applying a seasonal ARIMA(1, 1, 1)× (1, 1, 1)12 process.

Remark. The equation (17.2) can be rewritten in the equivalent form

φ?(B)Yt = θ?(B)Zt,

where φ?(·) and θ?(·) are polynomials of degree p+sP and q+sQ, respectively, whose co-
efficients can all be expressed in terms of φ1, . . . , φp,Φ1, . . . ,ΦP , θ1, . . . , θq, and Θ1, . . . ,ΘQ.

Remark. In Section 12.5 we discussed the classical decomposition model incorporating
trend, seasonality, and random noise. In modeling real data it might not be reasonable to
assume, as in the classical decomposition model, that the seasonal component st repeats
itself precisely in the same way cycle after cycle. SARIMA models allow for randomness
in the seasonal pattern from one cycle to the next.
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Table 17.1: Parameter estimation of the seasonal ARIMA(1, 1, 1)× (1, 1, 1)12 process.
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