14 Autoregressive Moving Average
Models

In this chapter an important parametric family of stationary time series is introduced,
the family of the autoregressive moving average, or ARMA, processes. For a large class
of autocovariance functions 7(-) it is possible to find an ARMA process { X;} with ACVF
~vx (+) such that ~(+) is well approximated by vx(+). In particular, for any positive integer
K, there exists an ARMA process {X;} such that yx(h) = v(h) for h=0,1,..., K. For
this (and other) reasons, the family of ARMA processes plays a key role in the modeling
of time series data. The linear structure of ARMA processes also leads to a substantial
simplification of the general methods for linear prediction (see Chapter 15).

Example. Figure 14.1 shows different ARMA processes with the corresponding auto-
correlation function and partial autocorrelation function (see Section 14.3).

14.1 ARMA(1,1) Processes

We start with an ARMA(1, 1) process to introduce some key properties of the autore-
gressive moving average processes (ARMA processes).

Definition 14.1.1. The time series {X,;} is an ARMA(1,1) process if it is stationary
and for every t satisfies
Xy —¢Xy 1 =2y + 07,1,

where {Z;} ~ WN(0,0?) and ¢ + 6 # 0.

Proposition 14.1.2. A stationary solution of the ARMA(1, 1) equation ezists if and
only if ¢ # +1.

o If |p| <1, then the unique stationary solution is given by the MA(co) process

Xo=Zi+(¢+0)> ¢ 2.

j=1

In this case {X;} is called causal (or future-independent) or a causal function of
{Z,}, since X; can be expressed in terms of the current and past values Zs, s < t.

o If |p| > 1, then the unique stationary solution is
Xi=—00""Z— (6+0)) 67 Zyy;.
j=1
The solution is noncausal, since {X;} is a function of Zs, s > t.
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Figure 14.1: Simulations of different ARMA processes. The left column shows an excerpt
(m = 96) of the whole time series (n = 480).
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Example. The processes X; — ¢X; 1 = Z; with |¢| > 1 are called explosive, because
the values of the time series quickly become large in magnitude.

e However, it is possible to modify this time series to obtain a stationary process as
follows. Write X;,1 = ¢ X; + Z;11, in which case

Xy = 07Xy — 0 Zip1 = ¢ (@ Kivo — 0 Zio) — 07 Zia

k
= 0" Xk — Y 07 2y
j=1

by iterating forward k steps. Because |¢|~! < 1, this result suggests the stationary
future dependent AR(1) model

(o)
- Z O Ly
j=1
Unfortunately, this model is useless because it requires us to know the future to

be able to predict the future, i.e. X; is noncausal.

e Nevertheless, excluding explosive models from consideration is not a problem be-
cause the models have causal counterparts. For example the two processes

X, —¢Xyy = Z;,  with |¢| > 1and {Z} ~ IDN(0,0%),
Y,— ¢ Wi, = W, with {W;} ~ IIDN(0, 0%¢?)
are stochastically equal, i.e. all finite distributions of the processes are the same.

For example, if X; —2X; | = Z; with 0% = 1, then Y; — %Y}_l = W;, with o3, = }L,
is an equivalent causal process.

Just as causality means that X; is expressible in terms of Z,, s < t, the dual concept
of invertibility means that Z; is expressible in terms X, s < t.

Proposition 14.1.3. The ARMA(1, 1) process is

e invertible if |0| < 1, and Z, is expressed in terms of X, s <t, by
Zy=X,—(¢0+0)> (07X,
7=1
e noninvertible if |0] > 1, and Z; is expressed in terms of X, s > t, by

Zy=—¢07' Xy + (04 0)> (—0)7 7 Xy
j=1

14-3



14.2 ARMA(p, q) Processes

Definition 14.2.1. The time series {X;} is an ARMA(p, q) process if it is stationary
and if for every t it satisfies

Xt - ¢1Xt71 R ¢pthp = Zt + 6121/,1 + ...+ qut,q, (141)
where {Z;} ~ WN(0,0?) and the polynomials
(1—¢1z—...—¢pz")

and
(14+61z+...+6,29)

have no common factors.

Example. Consider the model X;—¢X; 1 = Z;,—¢Z;_1 which looks like an ARMA(1, 1)
process and can also be written as (1 — ¢B)X; = (1 — ¢B)Z;. Apply the operator
(1—¢B)~! to both sides to obtain X; = Z;. Therefore X; is simply a white noise process.
The reason for this redundancy is the common factor in the polynomials (1 — ¢z) and

(1+6z).
Remark. It is convenient to use the form
O(B)X, = 0(B)Z,
where ¢(-) and 6(-) are the pth and the gth-degree polynomials
d(z)=1—r1z—...— ¢p2°
and
0(z) =14 6012+ ...+ 0,2,
and B is the backward shift operator.
Definition 14.2.2. The process {X;} is said to be an
e ARMA(p, q) process with mean p if {X; — p} is an ARMA(p, ¢) process,
e AR(p) process if #(z) =1 and
e MA(q) process if ¢(z) = 1.

An important part of Definition 14.2.1 is the requirement that {X,;} be stationary.
For the ARMA(1,1) we showed in Proposition 14.1.2, that a stationary solution exists
and is unique if and only if ¢ # £1. The analogous condition for the general ARMA (p, q)
process is ¢(z) =1 — ¢z — ... — ¢p2P # 0 for all complex z with |z| = 1. Complex z is
used here, since the zeros of a polynomial of degree p > 1 may be either real or complex.
The region defined by the set of complex z such that |z| = 1 is referred to as the unit
circle.
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Example. Consider the ARMA(2,1) process X; — %Xt_l + %Xt_g =7+ th_l with
{Z,} ~ WN(0,0?). The polynomial ¢(z) = 1 — 32+ 222 has zeros at 21, = 2(1+iV/3)/3
which lie outside the unit circle. The process therefore is causal. On the other hand,
the polynomial 6(z) = 1+ 2z has a zero at z = —3, and hence the process {X;} is not
invertible.

Proposition 14.2.3 (Existence and uniqueness). A stationary solution {X;} of (14.1)
exists (and is also the unique stationary solution) if and only if

dz) =1—rz—...—¢p2" #£0  forall |z| = 1.

Proposition 14.2.4 (Causality or future-independence). An ARMA(p, q) process { X}
is causal if there exist constants {1;} such that

STigsl<oo  and X, =Y ;Z; foralit. (14.2)
J=0 J=0

Causality is equivalent to the condition
p(z)=1—grz—...— 2" #0  for all |z] < 1.

Remark. The sequence {¢;} in (14.2) is determined by the relation
V(z) =Y 0 = 0(2)/¢(2)
=0
or equivalently by
p
¢]_Z¢k¢j—k:9j7 j:()u]-)"'a
k=1

where 0y := 1, 0; := 0 for j > ¢, and ; := 0 for j < 0.

Proposition 14.2.5 (Invertibility). An ARMA(p, q) process {X;} is invertible if there
exist constants {m;} such that

Z || < o0 and  Zy = Zﬂth,j for all t. (14.3)
=0 =0

Invertibility is equivalent to the condition
0(z) =14+601z+...+0,27#0 forall |z| <1.
Remark. The sequence {7;} in (14.3) is determined by the equations
q
7T]+Zek7rj—k:_¢]7 j20717"'7
k=1
where ¢y := —1, ¢; := 0 for 7 > p, and 7; := 0 for j < 0.
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Example. Consider the process

4 9 1
X — 1_0Xt—1 - 2_0Xt—2 =Zy+ 2y + é_lzt_2

or, in operator form,

4 9 o B 1,

At first, X, appears to be an ARMA(2,2) process. But, the associated polynomials

o(z) = (1+0.52)(1 — 0.92)
0(z) = (1 +0.52)*

have a common factor that can be canceled. So the model is an ARMA(1, 1) process
(1-0.9B)X; = (1+0.5B)%,.

It is causal because (1 —0.92) = 0 when z = 1790 which is outside the unit circle and also
invertible because (1 +0.5z) = 0 when z = —2 which is also outside the unit circle. The
causal representation is

X =2Z,+14) 0977,
j=1
the invertible one is .
Xp— 14> (<05Y7'X,_; = 7,
j=1
Proposition 14.2.6. Let {X,;} be the ARMA(p, q) process satisfying the equations
¢(B)X; =0(B)Zi,  {Z} ~ WN(0,0?),

where ¢(z) # 0 and 0(z) # 0 for all |z| = 1. Then there exist polynomials, o(z) and
0(z), nonzero for|z| < 1, of degree p and q respectively, and a white noise sequence {Z;}
such that {X;} satisfies the causal invertible equation

$(B)X, = 0(B)Z;.

Proof. Define

r<j<p Y F
~ 1—05;z
0= =0¢) [T T
s<j<q i #



where a,1,...,a, and byy1,...,b, are the zeros of ¢(z) and 0(z) which lie inside the
unit circle. Since ¢(z) # 0 and 6(z) # 0 for all |z| < 1, it suffices to show that the
process defined by

0(2)

Z*:~—X
T

is white noise, i.e.,

{Z;} ~ WN(0, 0 ( 11 ’aj|2> ( 11 |bk|_2> :

r<j<p r<j<p

Example. The ARMA process
X, —2Xy 1 =2, +47Z,_,, {Z,} ~ WN(0,0?),

is neither causal nor invertible. Introducing ¢(z) = 1 — 0.5z and 6(z) = 1 + 0.25z, we
see that {X;} has the causal invertible representation

X, — 05X, 1 =27 +0252Z" ,, {Z} ~ WN(0,40?).

14.3 Autocorrelation and Partial Autocorrelation Func-

tion of ARMA (p, q) Processes

First we calculate the autocovariance and autocorrelation function of a causal ARMA (p, q)
process {X;}. Secondly we define the partial autocorrelation function (PACF).

14.3.1 Calculation of the Autocovariance Function

Let
#(B)X, = 0(B)Z, {Z,} ~ WN(0,0?),

be a causal ARMA(p, q) process. The causality assumption implies that

X, = iijt_j, (14.4)
§=0
where -
D wid =0(2)/6(2), |2 <1. (14.5)
§=0

From Proposition 13.2.2 and (14.4) we obtain

Y(h) = B(Xn X)) = 0> bjthin.
j=0
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Example. The autocovariance function of an ARMA(1,1) process
Xy =Xy =2+ 02,4

with |¢| < 1 is given by

7x(0) = 0 Z V2
=0

(9+¢>2}’

_ 2
=0 |:1+1_—¢2

7x(1) = o Z Vi1,
j=0

eore),

= o? {9+¢+ =2

and

vx(h) = ¢" (1), h>2.

The calculation of the autocorrelation function is straightforward

14.3.2 Partial Autocorrelation Function

The partial autocorrelation function, like the autocorrelation function, conveys informa-
tion regarding the dependence structure of a stationary process. The partial autocorre-
lation a(k), k > 2, is the correlation of the two residuals obtained after regressing X1
and X; on the intermediate observations X, ..., Xj.

Example. To motivate the idea of partial autocorrelation function consider the causal

AR(1) model, X; — ¢X;_1 = Z;. Then,
’7X(2> = COV(Xt, thg) = COV(¢2Xt72 + (bthl + Zt, thg) = ¢2’)/(0)

Suppose we break this chain of dependence by removing the effect X; ;. That is, we
consider the correlation between X; — ¢ .X;_; and X, s — ¢.X;_1, because it is the corre-
lation between X; and X;_, with the liner dependence of each on X;_; removed. In this
way, we have broken the dependence chain between X; and X; 5. In fact,

COV(Xt - ¢Xt—17Xt—2 - ¢Xt—1) = COV(Zt, Xio — ¢Xt—1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation between X;
and X, with the linear effect of everything “in the middle” removed.
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To formally define the partial autocorrelation function for a mean-zero stationary
time series, let X5, for h > 2, denote the regression of Xy, on { Xy p 1, Xpan_2, .-, Xes1}s
which we write as

Xesn = BiXoono1 + BoXignoo + -+ Bro1 Xiga. (14.6)

No intercept is needed because the mean of X; is zero. In addition, let X, denote the
regression of X, on { X1, Xy12,..., Xiin_1}, then

Xi = BiXer1 + BoXero + + Bro1 Xepnot. (14.7)
Because of stationarity, the coefficients f, ..., B,_1 are the same in (14.6) and (14.7).

Definition 14.3.1. The partial autocorrelation function a(-) of a stationary time series
is defined by

a(1) = Cor(Xs, X1) = p(1),
and
Oé(k) = COI'(Xk+1 — Xk—i—laXl — Xl); k 2 2.

Proposition 14.3.2. An equivalent definition of the partial autocorrelation function on
an ARMA process { X} is the function o(-) defined by

a(0) =1
and
a(h) = ¢pn, h>1,
where ¢ny, 1S the last component of
0 =T (14.8)
(1) = (1), (W) and Ty = [y(i = )]y

Example. For MA(1) processes, it can be shown from (14.8) that the partial autocor-
relation function at lag h is

~(=0)"
(1+62+---+06%0)

a(h) = gpn =
Let lag h = 2. Recall from (13.6) that
7(0) = 0*(14+6*) and (1) =09 and ~(2)=0.
It follows that

T, — 7(0) ~(1) ond Tl = 1 ~(0)  —~(1)
7(1) ~(0) 72(0) —%(1) \ —~(1) ~(0)

g
N

Then
¢y = F;’h and a(2)
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Example. For causal AR(p) processes the best linear predictor of X, in terms of
1,X1,...,Xhis )
Xny1 = 01X + G2 Xna + .o+ 0 Xpp1-p

Since the coefficient ¢y, of X, is ¢, if h = p and 0 if A > p, we conclude that the partial
autocorrelation function «(-) of the process {X;} has the properties

and

a(h) =0, for h > p.

For h < p the values of a(h) can easily be computed from (14.8).
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