
14 Autoregressive Moving Average
Models

In this chapter an important parametric family of stationary time series is introduced,
the family of the autoregressive moving average, or ARMA, processes. For a large class
of autocovariance functions γ(·) it is possible to find an ARMA process {Xt} with ACVF
γX(·) such that γ(·) is well approximated by γX(·). In particular, for any positive integer
K, there exists an ARMA process {Xt} such that γX(h) = γ(h) for h = 0, 1, . . . , K. For
this (and other) reasons, the family of ARMA processes plays a key role in the modeling
of time series data. The linear structure of ARMA processes also leads to a substantial
simplification of the general methods for linear prediction (see Chapter 15).

Example. Figure 14.1 shows different ARMA processes with the corresponding auto-
correlation function and partial autocorrelation function (see Section 14.3).

14.1 ARMA(1, 1) Processes

We start with an ARMA(1, 1) process to introduce some key properties of the autore-
gressive moving average processes (ARMA processes).

Definition 14.1.1. The time series {Xt} is an ARMA(1, 1) process if it is stationary
and for every t satisfies

Xt − φXt−1 = Zt + θZt−1,

where {Zt} ∼WN(0, σ2) and φ+ θ 6= 0.

Proposition 14.1.2. A stationary solution of the ARMA(1, 1) equation exists if and
only if φ 6= ±1.

� If |φ| < 1, then the unique stationary solution is given by the MA(∞) process

Xt = Zt + (φ+ θ)
∞∑

j=1

φj−1Zt−j.

In this case {Xt} is called causal (or future-independent) or a causal function of
{Zt}, since Xt can be expressed in terms of the current and past values Zs, s ≤ t.

� If |φ| > 1, then the unique stationary solution is

Xt = −θφ−1Zt − (φ+ θ)
∞∑

j=1

φ−j−1Zt+j.

The solution is noncausal, since {Xt} is a function of Zs, s ≥ t.
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Figure 14.1: Simulations of different ARMA processes. The left column shows an excerpt
(m = 96) of the whole time series (n = 480).
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Example. The processes Xt − φXt−1 = Zt with |φ| > 1 are called explosive, because
the values of the time series quickly become large in magnitude.

� However, it is possible to modify this time series to obtain a stationary process as
follows. Write Xt+1 = φXt + Zt+1, in which case

Xt = φ−1Xt+1 − φ−1Zt+1 = φ−1(φ−1Xt+2 − φ−1Zt+2)− φ−1Zt+1

...

= φ−kXt+k −
k∑

j=1

φ−jZt+j

by iterating forward k steps. Because |φ|−1 < 1, this result suggests the stationary
future dependent AR(1) model

Xt = −
∞∑

j=1

φ−jZt+j.

Unfortunately, this model is useless because it requires us to know the future to
be able to predict the future, i.e. Xt is noncausal.

� Nevertheless, excluding explosive models from consideration is not a problem be-
cause the models have causal counterparts. For example the two processes

Xt − φXt−1 = Zt, with |φ| > 1 and {Zt} ∼ IID N(0, σ2
Z),

Yt − φ−1Yt−1 = Wt, with {Wt} ∼ IID N(0, σ2
Zφ
−2)

are stochastically equal, i.e. all finite distributions of the processes are the same.
For example, if Xt− 2Xt−1 = Zt with σ2

Z = 1, then Yt− 1
2
Yt−1 = Wt, with σ2

W = 1
4
,

is an equivalent causal process.

Just as causality means that Xt is expressible in terms of Zs, s ≤ t, the dual concept
of invertibility means that Zt is expressible in terms Xs, s ≤ t.

Proposition 14.1.3. The ARMA(1, 1) process is

� invertible if |θ| < 1, and Zt is expressed in terms of Xs, s ≤ t, by

Zt = Xt − (φ+ θ)
∞∑

j=1

(−θ)j−1Xt−j,

� noninvertible if |θ| > 1, and Zt is expressed in terms of Xs, s ≥ t, by

Zt = −φθ−1Xt + (φ+ θ)
∞∑

j=1

(−θ)−j−1Xt+j.
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14.2 ARMA(p, q) Processes

Definition 14.2.1. The time series {Xt} is an ARMA(p, q) process if it is stationary
and if for every t it satisfies

Xt − φ1Xt−1 − . . .− φpXt−p = Zt + θ1Zt−1 + . . .+ θqZt−q, (14.1)

where {Zt} ∼WN(0, σ2) and the polynomials

(1− φ1z − . . .− φpzp)

and
(1 + θ1z + . . .+ θqz

q)

have no common factors.

Example. Consider the model Xt−φXt−1 = Zt−φZt−1 which looks like an ARMA(1, 1)
process and can also be written as (1 − φB)Xt = (1 − φB)Zt. Apply the operator
(1−φB)−1 to both sides to obtain Xt = Zt. Therefore Xt is simply a white noise process.
The reason for this redundancy is the common factor in the polynomials (1 − φz) and
(1 + θz).

Remark. It is convenient to use the form

φ(B)Xt = θ(B)Zt,

where φ(·) and θ(·) are the pth and the qth-degree polynomials

φ(z) = 1− φ1z − . . .− φpzp

and

θ(z) = 1 + θ1z + . . .+ θqz
q,

and B is the backward shift operator.

Definition 14.2.2. The process {Xt} is said to be an

� ARMA(p, q) process with mean µ if {Xt − µ} is an ARMA(p, q) process,

� AR(p) process if θ(z) ≡ 1 and

� MA(q) process if φ(z) ≡ 1.

An important part of Definition 14.2.1 is the requirement that {Xt} be stationary.
For the ARMA(1, 1) we showed in Proposition 14.1.2, that a stationary solution exists
and is unique if and only if φ 6= ±1. The analogous condition for the general ARMA(p, q)
process is φ(z) = 1− φ1z − . . .− φpzp 6= 0 for all complex z with |z| = 1. Complex z is
used here, since the zeros of a polynomial of degree p > 1 may be either real or complex.
The region defined by the set of complex z such that |z| = 1 is referred to as the unit
circle.
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Example. Consider the ARMA(2, 1) process Xt − 3
4
Xt−1 + 9

16
Xt−2 = Zt + 5

4
Zt−1 with

{Zt} ∼WN(0, σ2). The polynomial φ(z) = 1− 3
4
z+ 9

16
z2 has zeros at z1,2 = 2(1±i

√
3)/3

which lie outside the unit circle. The process therefore is causal. On the other hand,
the polynomial θ(z) = 1 + 5

4
z has a zero at z = −4

5
, and hence the process {Xt} is not

invertible.

Proposition 14.2.3 (Existence and uniqueness). A stationary solution {Xt} of (14.1)
exists (and is also the unique stationary solution) if and only if

φ(z) = 1− φ1z − . . .− φpzp 6= 0 for all |z| = 1.

Proposition 14.2.4 (Causality or future-independence). An ARMA(p, q) process {Xt}
is causal if there exist constants {ψj} such that

∞∑

j=0

|ψj| <∞ and Xt =
∞∑

j=0

ψjZt−j for all t. (14.2)

Causality is equivalent to the condition

φ(z) = 1− φ1z − . . .− φpzp 6= 0 for all |z| ≤ 1.

Remark. The sequence {ψj} in (14.2) is determined by the relation

ψ(z) =
∞∑

j=0

ψjz
j = θ(z)/φ(z)

or equivalently by

ψj −
p∑

k=1

φkψj−k = θj, j = 0, 1, . . . ,

where θ0 := 1, θj := 0 for j > q, and ψj := 0 for j < 0.

Proposition 14.2.5 (Invertibility). An ARMA(p, q) process {Xt} is invertible if there
exist constants {πj} such that

∞∑

j=0

|πj| <∞ and Zt =
∞∑

j=0

πjXt−j for all t. (14.3)

Invertibility is equivalent to the condition

θ(z) = 1 + θ1z + . . .+ θqz
q 6= 0 for all |z| ≤ 1.

Remark. The sequence {πj} in (14.3) is determined by the equations

πj +

q∑

k=1

θkπj−k = −φj, j = 0, 1, . . . ,

where φ0 := −1, φj := 0 for j > p, and πj := 0 for j < 0.
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Example. Consider the process

Xt −
4

10
Xt−1 −

9

20
Xt−2 = Zt + Zt−1 +

1

4
Zt−2

or, in operator form,

(
1− 4

10
B − 9

20
B2

)
Xt =

(
1 +B +

1

4
B2

)
Zt.

At first, Xt appears to be an ARMA(2, 2) process. But, the associated polynomials

φ(z) = (1 + 0.5z)(1− 0.9z)

θ(z) = (1 + 0.5z)2

have a common factor that can be canceled. So the model is an ARMA(1, 1) process

(1− 0.9B)Xt = (1 + 0.5B)Zt.

It is causal because (1− 0.9z) = 0 when z = 10
9

which is outside the unit circle and also
invertible because (1 + 0.5z) = 0 when z = −2 which is also outside the unit circle. The
causal representation is

Xt = Zt + 1.4
∞∑

j=1

0.9j−1Zt−j,

the invertible one is

Xt − 1.4
∞∑

j=1

(−0.5)j−1Xt−j = Zt.

Proposition 14.2.6. Let {Xt} be the ARMA(p, q) process satisfying the equations

φ(B)Xt = θ(B)Zt, {Zt} ∼WN(0, σ2),

where φ(z) 6= 0 and θ(z) 6= 0 for all |z| = 1. Then there exist polynomials, φ̃(z) and
θ̃(z), nonzero for |z| ≤ 1, of degree p and q respectively, and a white noise sequence {Z∗t }
such that {Xt} satisfies the causal invertible equation

φ̃(B)Xt = θ̃(B)Z∗t .

Proof. Define

φ̃(z) = φ(z)
∏

r<j≤p

1− ajz
1− a−1j z

θ̃(z) = θ(z)
∏

s<j≤q

1− bjz
1− b−1j z

,
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where ar+1, . . . , ap and bs+1, . . . , bq are the zeros of φ(z) and θ(z) which lie inside the
unit circle. Since φ̃(z) 6= 0 and θ̃(z) 6= 0 for all |z| ≤ 1, it suffices to show that the
process defined by

Z∗t =
φ̃(z)

θ̃(z)
Xt

is white noise, i.e.,

{Z∗t } ∼WN(0, σ2

( ∏

r<j≤p

|aj|2
)( ∏

r<j≤p

|bk|−2
)
.

Example. The ARMA process

Xt − 2Xt−1 = Zt + 4Zt−1, {Zt} ∼WN(0, σ2),

is neither causal nor invertible. Introducing φ̃(z) = 1 − 0.5z and θ̃(z) = 1 + 0.25z, we
see that {Xt} has the causal invertible representation

Xt − 0.5Xt−1 = Z∗t + 0.25Z∗t−1, {Z∗t } ∼WN(0, 4σ2).

14.3 Autocorrelation and Partial Autocorrelation Func-

tion of ARMA(p, q) Processes

First we calculate the autocovariance and autocorrelation function of a causal ARMA(p, q)
process {Xt}. Secondly we define the partial autocorrelation function (PACF).

14.3.1 Calculation of the Autocovariance Function

Let
φ(B)Xt = θ(B)Zt, {Zt} ∼WN(0, σ2),

be a causal ARMA(p, q) process. The causality assumption implies that

Xt =
∞∑

j=0

ψjZt−j, (14.4)

where
∞∑

j=0

ψjz
j = θ(z)/φ(z), |z| ≤ 1. (14.5)

From Proposition 13.2.2 and (14.4) we obtain

γ(h) = E(Xt+hXt) = σ2

∞∑

j=0

ψjψj+|h|.
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Example. The autocovariance function of an ARMA(1, 1) process

Xt − φXt−1 = Zt + θZt−1

with |φ| < 1 is given by

γX(0) = σ2

∞∑

j=0

ψ2
j

= σ2

[
1 +

(θ + φ)2

1− φ2

]
,

γX(1) = σ2

∞∑

j=0

ψj+1ψj

= σ2

[
θ + φ+

(θ + φ)2φ

1− φ2

]
,

and

γX(h) = φh−1γ(1), h ≥ 2.

The calculation of the autocorrelation function is straightforward

ρX(h) :=
γ(h)

γ(0)
.

14.3.2 Partial Autocorrelation Function

The partial autocorrelation function, like the autocorrelation function, conveys informa-
tion regarding the dependence structure of a stationary process. The partial autocorre-
lation α(k), k ≥ 2, is the correlation of the two residuals obtained after regressing Xk+1

and X1 on the intermediate observations X2, . . . , Xk.

Example. To motivate the idea of partial autocorrelation function consider the causal
AR(1) model, Xt − φXt−1 = Zt. Then,

γX(2) = Cov(Xt, Xt−2) = Cov(φ2Xt−2 + φZt−1 + Zt, Xt−2) = φ2γ(0).

Suppose we break this chain of dependence by removing the effect Xt−1. That is, we
consider the correlation between Xt − φXt−1 and Xt−2 − φXt−1, because it is the corre-
lation between Xt and Xt−2 with the liner dependence of each on Xt−1 removed. In this
way, we have broken the dependence chain between Xt and Xt−2. In fact,

Cov(Xt − φXt−1, Xt−2 − φXt−1) = Cov(Zt, Xt−2 − φXt−1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation between Xt

and Xs with the linear effect of everything “in the middle” removed.
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To formally define the partial autocorrelation function for a mean-zero stationary
time series, let X̂t+h, for h ≥ 2, denote the regression ofXt+h on {Xt+h−1, Xt+h−2, . . . , Xt+1},
which we write as

X̂t+h = β1Xt+h−1 + β2Xt+h−2 + · · ·+ βh−1Xt+1. (14.6)

No intercept is needed because the mean of Xt is zero. In addition, let X̂t denote the
regression of Xt on {Xt+1, Xt+2, . . . , Xt+h−1}, then

X̂t = β1Xt+1 + β2Xt+2 + · · ·+ βh−1Xt+h−1. (14.7)

Because of stationarity, the coefficients β1, . . . , βh−1 are the same in (14.6) and (14.7).

Definition 14.3.1. The partial autocorrelation function α(·) of a stationary time series
is defined by

α(1) = Cor(X2, X1) = ρ(1),

and

α(k) = Cor(Xk+1 − X̂k+1, X1 − X̂1), k ≥ 2.

Proposition 14.3.2. An equivalent definition of the partial autocorrelation function on
an ARMA process {Xt} is the function α(·) defined by

α(0) = 1

and

α(h) = φhh, h ≥ 1,

where φhh is the last component of

φh = Γ−1h γh, (14.8)

γh(1) = (γ(1), . . . , γ(h))′ and Γh = [γ(i− j)]hi,j=1.

Example. For MA(1) processes, it can be shown from (14.8) that the partial autocor-
relation function at lag h is

α(h) = φhh =
−(−θ)h

(1 + θ2 + · · ·+ θ2h)
.

Let lag h = 2. Recall from (13.6) that

γ(0) = σ2(1 + θ2) and γ(1) = σ2θ and γ(2) = 0.

It follows that

Γ2 =

(
γ(0) γ(1)

γ(1) γ(0)

)
and Γ−12 =

1

γ2(0)− γ2(1)

(
γ(0) −γ(1)

−γ(1) γ(0)

)

Then

φ2 = Γ−12 γ2 and α(2) =
−θ2

1 + θ2 + θ4
.
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Example. For causal AR(p) processes the best linear predictor of Xh+1 in terms of
1, X1, . . . , Xh is

X̂h+1 = φ1Xh + φ2Xh−1 + . . .+ φpXh+1−p.

Since the coefficient φhh of X1 is φp if h = p and 0 if h > p, we conclude that the partial
autocorrelation function α(·) of the process {Xt} has the properties

α(p) = φp

and

α(h) = 0, for h > p.

For h < p the values of α(h) can easily be computed from (14.8).
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