13 Stationary Processes

In time series analysis our goal is to predict a series that typically is not deterministic
but contains a random component. If this random component is stationary, then we
can develop powerful techniques to forecast its future values. These techniques will be
developed and discussed in this chapter.

13.1 Basic Properties

In Section 12.4 we introduced the concept of stationarity and defined the autocovariance
function (ACVF) of a stationary time series {X;} at lag h as

vx(h) = Cov(Xyip, Xy), h=0,£1,+2...
and the autocorrelation function as

_x(h)
px(h): 7x(0)
The autocovariance function and autocorrelation function provide a useful measure of
the degree of dependence among the values of a time series at different times and for this
reason play an important role when we consider the prediction of future values of the
series in terms of the past and present values. They can be estimated from observations
of Xi,...,X, by computing the sample autocovariance function and autocorrelation
function as described in Definition 12.4.4.

Proposition 13.1.1. Basic properties of the autocovariance function ~y(-):
7(0) >0,
[v(R)| < ~(0) for all h,
v(h) = ~v(=h) for all h, i.e., () is even.

Definition 13.1.2. A real-valued function x defined on the integers is non-negative
definite if

n
Z a;k(t—j)a; >0
ij=1
for all positive integers n and vectors @ = (aq, . .., a,)" with real-valued components a;.

Proposition 13.1.3. A real-valued function defined on the integers is the autocovariance
function of a stationary time series if and only if it is even and non-negative definite.

Proof. To show that the autocovariance function ~(+) of any stationary time series {X;}
is non-negative definite, let @ be any n x 1 vector with real components a4, ..., a, and
let X,, = (X1,...,X,) . By the non-negativity of variances,
n
Var(a'X,) =adT',a = Z aiy(i — j)a; >0,

ij=1
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where I',, is the covariance matrix of the random vector X,,. The last inequality, how-
ever, is precisely the statement that 7(-) is non-negative definite. The converse result,
that there exists a stationary time series with autocovariance function k if k is even,
real-valued, and non-negative definite, is more difficult to establish (details see Brockwell
and Davis (1991)). O

Example. Let us show that the real-valued function x(-) defined on the integers by

1 ifh=0,
k(h) =< p if h =1,

0 otherwise,

is an autocovariance function of a stationary time series if and only if |p| < 1/2.

e If |p| < 1/2 then k(-) is the autocovariance function of an MA(1) process (see
(12.2), p. 12-12) with 02 = (1 4+ 6*)"! and 0 = (2p)"1(1 £ /1 — 4p?).

o If p>1/2, K = [r(i—j)]};—, and @ is the n-component vector a = (1,-1,1,—1,...),
then )
>
2p—1
which shows that x(-) is not non-negative definite and therefore is not an autoco-
variance function.

adKa=n-2(n-1)p<0 for n

e If p < —1/2, the same argument using the n-component vector a = (1,1,1,...)
again shows that r(+) is not non-negative definite.

Remark. 1f {X,} is a stationary time series, then the vector (X7, ..., X,)" and the time-
shifted vector (Xiip,...,X,1n) have the same mean vectors and covariance matrices
for every integer h and positive integer n.

Definition 13.1.4. {X,} is a strictly stationary time series if
d
(Xl, . 7Xn)/ == <X1+h, e ,Xn+h)/

for all integers h and n > 1. Here 2 is used to indicate that the two random vectors
have the same joint distribution function.

Proposition 13.1.5. Properties of a strictly stationary time series {X;}:
e The random variable X; are identically distributed;
o (Xi, Xivn) < (X1, Xy4p)" for all integers t and h;
o {X;} is weakly stationary if BE(X?) < oo for all t;

o Weak stationarity does not imply strict stationarity;
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e An iid sequence is strictly stationary.

Definition 13.1.6 (MA(q) process). {X;} is a moving average process of order ¢
(MA(q) process) if
Xt - Zt + Gth_l + ...+ qut—qa (131)

where {Z;} ~ WN(0,0?) and 61, ...,6, are constants.
Remark. 1If {Z;} is iid noise, then (13.1) defines a stationary time series that is strictly

stationary. It follows also that {X;} is g-dependent, i.e., that X, and X; are independent
whenever |t — s| > q.

Remark. We say that a stationary time series is ¢g-correlated if y(h) = 0 whenever |h| > q.
A white noise sequence is then O-correlated, while the MA(1) process is 1-correlated.

The importance of MA(q) processes derives from the fact that every g-correlated
process is an MA(q) process, i.e., if {X;} is a stationary g-correlated time series with
mean 0, then it can be represented as the MA(q) process in (13.1).

Definition 13.1.7 (AR(p) process). {X;} is an autoregressive process of order p if
Xt — leXt—l + N + (prtfp + Zt (132)
where {Z;} ~ WN(0,0?) and ¢y, ..., $, are constants.

Example. Figure 13.1 shows different MA(q) and AR(p) processes.

13.2 Linear Processes

The class of linear time series models, which includes the class of autoregressive moving
average (ARMA) models (see Chapter 14), provides a general framework for studying
stationary processes. In fact, every weakly stationary process is either a linear process or
can be transformed to a linear process by subtracting a deterministic component. This
result is known as Wold’s decomposition (see Brockwell and Davis (1991), pp. 187-191).
Therefore we cite some results of the theory of linear processes.

Definition 13.2.1. The time series {X,} is a linear process if it has the representation
Xi= Y iZy (13.3)
Jj=—00

for all ¢, where {Z;} ~ WN(0,0?) and {¢;} is a sequence of constants with Y™ || <
0.

Remark. In terms of the backward shift operator B, the linear process (13.3) can be
written more compactly as

Xt = w(B)Zta
where ¥(B) =Y 2 ;B
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Figure 13.1: Simulations of different MA(¢q) and AR(p) processes. The left column shows
an excerpt (m = 96) of the whole time series (n = 480).
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Remark. A linear process is called a moving average or MA(oo) if ¢; = 0 for all j < 0,
ie., if

Xi=> iZi ;.
j=0

Proposition 13.2.2. Let {Y;} be a stationary time series with mean 0 and covariance
function vy If 3772 || < oo, then the time series

Xi= ) WY =v(B)Y,

j=—o0

is stationary with mean 0 and autocovariance function

o0 [e.e]

Yx(h) = Z Z Vibyy (h+k = j). (13.4)

j=—00 k=—00
In the special case where {X;} is a linear process,
vx(h) = o’ Z Yitjtn. (13.5)
j=—00
Proof. Since EY; = 0, we have

EX, = 0,

E(XinX:) = E [( i ij;t—i-h—j) (i 1/)kYt—k)

j=—00 k=—o00

= > D BV Yis)

Jj=—00 k=—00

= Z Z Vithiyy (h = j + k),

Jj=—00 k=—o00

which shows that {X;} is stationary with covariance function (13.4). Finally, if {Y;} is
the white noise sequence {Z;} in (13.3), then vy (h — j+ k) = 0% if k = j — h and 0
otherwise, from which (13.5) follows. O

Example. Consider the MA(g) process in (13.1). We find EX; = 0 and EX? =
o237 0? with 0, = 1 and with Proposition 13.2.2 we get

j=0"J
q—|h|
0> 0,0, if k] <q,
=9 =
0, if |h| > q.
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Example. Consider the AR(1) equation
Xt :¢Xt_1+Zt, t:O,:tl,:tQ,

(see page 12-12). Although the series is first observed at time ¢ = 0, the process is
regarded as having started at some time in the remote past. Substituting for lagged

values of X, gives
J—1

X =Y & Zj+ ¢ Xy (13.6)
§=0
The right hand side consists of two parts, the first of which is a moving average of lagged
values of the white noise variable driving the process. The second part depends on the
value of X; at time t — J. Taking expectations and treating X; ; as a fixed number
yields

J—-1
E(X,) =E (Z qsfzt_j> +E(¢7X,_y) = ¢ Xo_.

J=0

If |¢| > 1, the mean value of the process depends on the starting value, X; ;. Expression
(13.6) therefore contains a deterministic component and a knowledge of X;_; enables
non-trivial prediction to be made for future values of the series. If, on the other hand,
|¢| < 1, this deterministic component is negligible if J is large. As J — o0, it effectively
disappears and so if the process is regarded as having started at some point in the remote
past, it is quite legitimate to write (13.6) in the form

X, =Y &7 t=0,... T
=0

Since > 2 [#]) < oo it follows from Proposition 13.2.2 that the AR(1) process is sta-
tionary with mean 0 if |¢| < 1 and the autocovariance function is given by

¢h
1— ¢?

yx(h) =0y ¢t = o’
=0

for h > 0.
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