
8 Principal Components Analysis

Further reading. The paper Xoplaki et al. (2000) shows a nice application of the principal
components and canonical correlation analysis method (see Chapter 9).

8.1 Introduction

Example (Weather Report, p. 1-6). The data set consists of sunshine (three variables),
air temperature (six variables), heating degree days (HDD) and precipitation data (five
variables). Figure 8.1 shows a scatterplot matrix of several variables. With the help of
principal component analysis we want to reduce the number of variables, without loosing
a lot of information.

A principal component analysis is concerned with explaining the variance-covariance
structure of a set of variables through a few linear combinations of these variables. Its
general objectives are (1) data reduction and (2) interpretation.

Although p components are required to reproduce the total system variability, often
much of this variability can be accounted for by a small number k of the principal
components. If so, there is almost as much information in the k components as there
is in the original p variables. The k principal components can then replace the initial
p variables, and the original data set, consisting of n measurements on p variables, is
reduced to a data set consisting of n measurements on k principal components.

Analyses of principal components are more of a means to an end rather than an
end in themselves, because they frequently serve as intermediate steps in much larger
investigations.

8.2 Population Principal Components

Algebraically, principal components are particular linear combinations of the p random
variables X1, . . . , Xp. Geometrically, these linear combinations represent the selection
of a new coordinate system obtained by rotating the original system with X1, . . . , Xp as
the coordinate axes. The new axes represent the directions with maximum variability
and provide a simpler and more parsimonious description of the covariance structure.

As we shall see, principal components depend solely on the covariance matrix Σ
(or the correlation matrix ρ of X1, . . . , Xp). Their development does not require a
multivariate normal assumption. On the other hand, principal components derived for
multivariate normal populations have useful interpretations in terms of the constant
density ellipsoids. Further, inferences can be done from the sample components when
the population is multivariate normal.

Let the random vector X ′ = (X1, . . . , Xp) have the covariance matrix Σ with eigen-
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values λ1 ≥ . . . ≥ λp ≥ 0. Consider the linear combinations

Y1 = a′1X = a11X1 + . . .+ a1pXp

...

Yp = a′pX = ap1X1 + . . .+ appXp.

Then, we find

Var(Yi) = a′iΣai, i = 1, . . . , p (8.1)

Cov(Yi, Yk) = a′iΣak, i, k = 1, . . . , p (8.2)

The principal components are those uncorrelated linear combinations Y1, . . . , Yp whose
variances in (8.1) are as large as possible.

Definition 8.2.1. We define

First principal component = linear combination a′1Xthat maximizes

Var(a′1X) subject to a′1a1 = 1

Second principal component = linear combination a′2Xthat maximizes

Var(a′2X) subject to a′2a2 = 1 and

Cov(a′1X,a′2X) = 0
...

ith principal component = linear combination a′iXthat maximizes

Var(a′iX) subject to a′iai = 1 and

Cov(a′iX,a′kX) = 0 for k < i.

Proposition 8.2.2. Let Σ be the covariance matrix associated with the random vector
X ′ = (X1, . . . , Xp). Let Σ have eigenvalue-eigenvector pairs (λ1, e1), . . . , (λp, ep) where
λ1 ≥ . . . ≥ λp ≥ 0. Then the ith principal component is given by

Yi = e′iX =

p∑

j=1

eijXj, i = 1, . . . , p. (8.3)

With these choices

Var(Yi) = e′iΣei = λi, i = 1, . . . , p

Cov(Yi, Yk) = e′iΣek = 0, i 6= k.

Remark. If some λi are equal, the choices of the corresponding coefficient vectors, ei,
and hence Yi, are not unique.
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Proposition 8.2.3. Let X ′ = (X1, . . . , Xp) as in Proposition 8.2.2. Then

tr(Σ) =

p∑

i=1

σii =

p∑

i=1

Var(Xi) =

p∑

i=1

λi =

p∑

i=1

Var(Yi) (8.4)

and the proportion of total population variance due to the kth principal component

λk∑p
i=1 λi

, k = 1, . . . , p.

Remark. If most of the total population variance, for large p, can be attributed to the
first one, two or three components, then these components can “replace” the original p
variables without much loss of information.

Remark. The magnitude of eik – also principal component loading – measures the im-
portance of the kth variable to the ith principal component and thus is a useful basis
for interpretation. A large coefficient (in absolute value) corresponds to a high loading,
while a coefficient near zero has a low loading.

Remark. One important use of principal components is interpreting the original data in
terms of the principal components. The images of the original data under the principal
components transformation are referred to as principal component scores.

Proposition 8.2.4. If Y1 = e′1X, . . . , Yp = e′pX are the principal components obtained
from the covariance matrix Σ then

ρYi,Xk
=
eik
√
λi√

σkk
, i, k = 1, . . . , p.

Remark. Suppose X ∼ Np(0,Σ). Then we have c2 =
∑p

i=1 y
2
i /λi and this equation

defines an ellipsoid with axes y1, . . . , yp lying in directions of e1, . . . , ep, respectively.

8.2.1 Principal Components obtained from Standardized Val-
ues

Principal components may also be obtained for the standardized variables

Zi =
Xi − µi√

σii
, i = 1, . . . , p (8.5)

or

Z =
(
V1/2

)−1
(X − µ), (8.6)

where the diagonal standard deviation matrix V1/2
is defined as

V1/2
=




√
σ11 0 · · · 0

0
√
σ22 · · · 0

...
...

. . .
...

0 0 · · · √σpp.



.
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We find E(Z) = 0 and Cov(Z) =
(
V−1/2

)−1
Σ
(
V1/2

)−1
= ρ.

Remark. The eigenvalue-eigenvector pairs derived from Σ are in general not the same
as the ones derived from ρ.

Proposition 8.2.5. The ith principal component of the standardized variables Z ′ =
(Z1, . . . , Zp) with Cov(Z) = ρ, is given by

Yi = e′iZ = e′i

(
V1/2

)−1
(X − µ), i = 1, . . . , p.

Moreover
p∑

i=1

Var(Yi) =

p∑

i=1

Var(Zi) = p

and
ρYi,Zk

= eik
√
λi, i, k = 1, . . . , p.

In this case (λ1, e1), . . . , (λp, ep) are the eigenvalue-eigenvector pairs of ρ with λ1 ≥
. . . ≥ λp ≥ 0.

Remark. Variables should be standardized if they are measured on scales with widely
differing ranges or if the units of measurements are not commensurate.

8.3 Summarizing Sample Variation by Principal Com-

ponents

We now study the problem of summarizing the variation in n measurements on p vari-
ables with a few judiciously chosen linear combinations. Suppose the data x1, . . . ,xn
represent n independent drawings from some p-dimensional population with mean vec-
tor µ and covariance matrix Σ. These data yield the sample mean vector x, sample
covariance matrix S and the sample correlation matrix R.

The uncorrelated combinations with the largest variances will be called the sample
principal components. The sample principal components (PC) are defined as those linear

8-4



combinations which have maximum sample variance. Specifically,

First sample PC = linear combination a′1xj that maximizes the

sample variance Var(a′1xj) subject to a′1a1 = 1

Second sample PC = linear combination a′2xj that maximizes the

sample variance Var(a′2xj) subject to a′2a2 = 1 and

Cov(a′1xj,a
′
2xj) = 0

...

ith sample PC = linear combination a′ixj that maximizes the

sample variance Var(a′ixj) subject to a′iai = 1 and

Cov(a′ixj,a
′
kxj) = 0, k < i.

Proposition 8.3.1. If S = {sik} is the p×p sample covariance matrix with eigenvalue-
eigenvector pairs (λ̂1, ê1), . . . , (λ̂p, êp) the ith sample principal component is given by

ŷi = ê′ix = êi1x1 + . . .+ êipxp, i = 1, . . . , p,

where λ̂1 ≥ . . . ≥ λ̂p ≥ 0 and x is any observation on the variable X1, . . . , Xp. Also,

sample variance (ŷk) = λ̂k, k = 1, . . . , p,

sample covariance (ŷi, ŷk) = 0, i 6= k.

In addition

total sample variance =

p∑

i=1

sii = λ̂1 + . . .+ λ̂p

and

r(ŷi, xk) =
êik
√
λ̂i√

σkk
, i, k = 1, . . . , p.

Number of Principal Components

How many components to retain? There is no definitive answer to this question. A
useful visual aid to determining an appropriate number of principal components is a
scree plot. With the eigenvalues ordered from largest to smallest, a scree plot is a plot of
λ̂i versus i. To determine the appropriate number of components, we look for an elbow
(bend) in the scree plot. The number of components is taken to be the point at which
the remaining eigenvalues are relatively small and all about the same size.
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Remark. An unusually small value for the last eigenvalue from either the sample covari-
ance or correlation matrix can indicate an unnoticed linear dependency in the data set
and should therefore not be routinely ignored.

Example (Weather Report, p. 1-6). Figure 8.2 shows the results of the principal com-
ponent analysis calculated with the correlation matrix.
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Figure 8.1: Scatterplot matrix of some variables of the Weather Report, p. 1-6.
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Figure 8.2: Screeplot of the principal components analysis (top left), scatterplot matrix
of the scores calculated with the correlation matrix (top right) and the loadings of the
variables (bottom). Data set: Weather Report, p. 1-6.
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9 Canonical Correlation Analysis

Further reading. Read again the paper Xoplaki et al. (2000) to see how the canonical
correlation analysis method can be applied in climate sciences.

9.1 Introduction

Example (Soil Evaporation, p. 1-8). The observed variables are maximum (maxst),
minimum (minst), and average soil temperature (avst); maximum (maxat), minimum
(minat), and average air temperature (avat); maximum (maxh), minimum (minh), and
average relative humidity (avh); total wind in miles per day (wind) and the daily amount
of evaporation from the soil (evap). The three “average” measurements are integrated:
average soil temperature is the integrated area under the daily soil temperature curve,
average air temperature is the integrated area under the daily air temperature curve,
and average relative humidity is the integrated area under the daily relative humidity
curve.

We want to find the association between the soil variables (maxst, minst and avst)
and the air variables (maxat, minat, avat, maxh, minh, avh, wind).

Canonical correlation analysis (CCA) seeks to identify and quantify the associations
between two sets of variables. Canonical correlation analysis focuses on the correlation
between a linear combination of the variables in one set and a linear combination of the
variables in another set. The idea is first to determine the pair of linear combinations
having the largest correlation. Next, we determine the pair of linear combinations having
the largest correlation among all pairs uncorrelated with the initially selected pair, and
so on. The pairs of linear combinations are called the canonical variables, and their
correlations are called canonical correlations. The canonical correlations measure the
strength of association between the two sets of variables. The maximization aspect
of the technique represents an attempt to concentrate a high-dimensional relationship
between two sets of variables into a few pairs of canonical variables.

9.2 Canonical Variates and Canonical Correlations

We are interested in measures of association between two groups of variables. The first
group, of p variables, is represented by the (p × 1) random vector X(1). The second
group, of q variables, is represented by the (q × 1) random vector X(2). We assume, in
the theoretical development, that X(1) represents the smaller set, so that p ≤ q.

9-1



For the random vector X(1) and X(2), let

E(X(1)) = µ(1), Cov(X(1)) = Σ11

E(X(2)) = µ(2), Cov(X(2)) = Σ22

Cov(X(1),X(2)) = Σ12 = Σ′21.

It will be convenient to consider X(1) and X(2) jointly, so we find that the random
vector

X =

(
X(1)

X(2)

)

((p+q)×1)

has mean vector

µ = E(X) =

(
µ(1)

µ(2)

)

((p+q)×1)

and covariance matrix

Σ = E(X − µ)(X − µ)′

=

(
Σ11 Σ12

)
(p×(p+q))

Σ21 Σ22 (q×(p+q))

((p+q)×p) ((p+q)×q)

The covariances between pairs of variables from different sets – one variable from
X(1), one variable from X(2) – are contained in Σ12 or, equivalently, in Σ21. That is,
the pq elements of Σ12 measure the association between the two sets. When p and q
are relatively large, interpreting the elements of Σ12 collectively is ordinarily hopeless.
Moreover, it is often linear combinations of variables that are interesting and useful for
predictive or comparative purposes. The main task of canonical correlation analysis is
to summarize the associations between the X(1) and X(2) sets in terms of a few carefully
chosen covariances (or correlations) rather than the pq covariances in Σ12.

Linear combinations provide simple summary measures of a set of variables. Set

U = a′X(1)

V = b′X(2)

for some pair of coefficient vectors a and b. We obtain

Var(U) = a′Cov(X(1))a = a′Σ11a

Var(V ) = b′Cov(X(2))b = b′Σ22b

Cov(U, V ) = a′Cov(X(1),X(2))b = a′Σ12b.
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We shall seek coefficient vectors a and b such that

Cor(U, V ) =
a′Σ12b√

a′Σ11a
√
b′Σ22b

(9.1)

is as large as possible.

Definition 9.2.1. We define:
First pair of canonical variables (first canonical variate pair): pair of linear combi-

nations U1, V1 having unit variances, which maximizes the correlation (9.1)

Second pair of canonical variables (second canonical variate pair): pair of linear
combinations U2, V2 having unit variances, which maximize the correlation (9.1) among
all choices that are uncorrelated with the first pair of canonical variables.

At the kth step,

The kth pair of canonical variables (kth canonical variate pair): pair of linear com-
binations Uk, Vk having unit variances, which maximize the correlation (9.1) among all
choices uncorrelated with the previous k − 1 canonical variable pairs.

The correlation between the kth pair of canonical variables is called the kth canonical
correlation.

Proposition 9.2.2. Suppose p ≤ q and let the random vectors X(1) and X(2) have
Cov(X(1)) = Σ11, Cov(X(2)) = Σ22 and Cov(X(1),X(2)) = Σ12 = Σ′21, where Σ has
full rank. For coefficient vectors a and b, form the linear combinations U = a′X(1) and
V = b′X(2). Then

max
a,b

Cor(U, V ) = ρ∗1

is attained by the linear combinations

U1 = e′1Σ
−1/2
11︸ ︷︷ ︸

a′
1

X(1) and V1 = f ′1Σ
−1/2
22︸ ︷︷ ︸

b′1

X(2).

The kth pair of canonical variates, k = 2, . . . , p,

Uk = e′kΣ
−1/2
11 X(1) and Vk = f ′kΣ

−1/2
22 X(2)

maximizes
Cor(Uk, Vk) = ρ∗k

among those linear combinations uncorrelated with the preceding 1, 2, . . . , k−1 canonical
variables.

Here (ρ∗1)
2 ≥ . . . ≥ (ρ∗p)

2 are the eigenvalues of Σ−1/211 Σ12Σ
−1
22 Σ21Σ

−1/2
11 , and e1, . . . , ep

are the associated (p× 1) eigenvectors.
The canonical variates have the properties

Var(Uk) = Var(Vk) = 1

Cov(Uk, Ul) = Cov(Vk, Vl) = Cov(Uk, Vl) = 0

Cor(Uk, Ul) = Cor(Vk, Vl) = Cor(Uk, Vl) = 0.

for k, l = 1, 2, . . . , p with k 6= l.
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Remark. The quantities (ρ∗1)
2 ≥ . . . ≥ (ρ∗p)

2 are also the p largest eigenvalues of the
matrix

Σ−1/222 Σ21Σ
−1
11 Σ12Σ

−1/2
22

with corresponding (q × 1) eigenvectors f 1, . . . ,f p. Each f i is proportional to

Σ−1/222 Σ21Σ
−1/2
11 ei.

Remark. If the original variables are standardized with Z(1) = (Z
(1)
1 , . . . , Z

(1)
p )′ and

Z(2) = (Z
(2)
1 , . . . , Z

(2)
q )′, the canonical variates are of the form

Uk = a′kZ
(1) = e′kρ

−1/2
11 Z(1)

Vk = b′kZ
(2) = f ′kρ

−1/2
22 Z(2). (9.2)

Here, Cov(Z(1)) = ρ11, Cov(Z(2)) = ρ22, Cov(Z(1),Z(2)) = ρ12 = ρ′21, and ek and

fk are the eigenvectors of ρ−1/211 ρ12ρ
−1
22 ρ21ρ

−1/2
11 and ρ−1/222 ρ21ρ

−1
11 ρ12ρ

−1/2
22 , respec-

tively. The canonical correlations, ρ∗k, satisfy

Cor(Uk, Vk) = ρ∗k, k = 1, . . . , p,

where (ρ∗1)
2 ≥ . . . ≥ (ρ∗p)

2 are the nonzero eigenvalues of the matrixρ−1/211 ρ12ρ
−1
22 ρ21ρ

−1/2
11

or, equivalently, the largest eigenvalues of ρ−1/222 ρ21ρ
−1
11 ρ12ρ

−1/2
22 .

Remark. The canonical coefficients for the standardized variables,

Z
(1)
i =

X
(1)
i − µ(1)

i√
σii

,

are simply related to the canonical coefficients attached to the original variables X
(1)
i .

Specifically, if a′k is the coefficient vector for the kth canonical variate Uk, then a′kV
1/2
11

is the coefficient vector for the kth canonical variate constructed from the standard-
ized variables Z(1). Here V1/2

11 is the diagonal matrix with the ith diagonal element
√
σii =

√
Var(X

(1)
i ). Similarly, b′kV

1/2
22 is the coefficient vector for the canonical variate

constructed from the set of standardized variables Z(2). The canonical correlations are
unchanged by the standardization.

9.3 Interpreting the Population Canonical Variables

Canonical variables are, in general, artificial. That is, they have no physical meaning.
If the original variables X(1) and X(2) are used, the canonical coefficients a and b
have units proportional to those of the X(1) and X(2) sets. If the original variables
are standardized to have zero means and unit variances, the canonical coefficients have
no units of measurement, and they must be interpreted in terms of the standardized
variables.
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9.3.1 Identifying the Canonical Variables

Even though the canonical variables are artificial, they can be “identified” in terms of
the subject-matter variables. Many times this identification is aided by computing the
correlations between the canonical variates and the original variables. These correlations,
however, must be interpreted with caution. They provide only univariate information,
in the sense that they do not indicate how the original variables contribute jointly to the
canonical analyses. For this reason, many investigators prefer to assess the contributions
of the original variables directly from the standardized coefficients (9.2).

Let A = (a1, . . . ,ap)
′ and B = (b1, . . . , bq)

′, so that the vectors of canonical variables
are

U = A X(1) and V = B X(2)

(p×1) (p×p) (p×1) (q×1) (q×q) (q×1)

where we are primarily interested in the first p canonical variables in V .

Introducing the (p× p) diagonal matrix V−1/2
11 with kth diagonal element

σ
−1/2
kk =

(
Var(X

(1)
k )
)−1/2

,

we find
(p×p) ρU ,X(1) = Cor(U ,X(1)) = Cov(U ,V−1/2

11 X(1))

= Cov(AX(1),V−1/2
11 X(1)) = AΣ11V

−1/2
11 .

(9.3)

Similar calculations for the pairs (U ,X(2)), (V ,X(2)) and (V ,X(1)) yield

(p×q) ρU ,X(2) = AΣ12V
−1/2
22

(q×q) ρV ,X(2) = BΣ22V
−1/2
22

(q×p) ρV ,X(1) = BΣ21V
−1/2
11 ,

(9.4)

where V−1/2
22 is the (q × q) diagonal matrix with the ith diagonal element

σ
−1/2
ii =

(
Var(X

(2)
i )
)−1/2

.

Canonical variables derived from standardized variables are sometimes interpreted
by computing the correlations. Thus

ρU ,Z(1) = AZρ11, ρV ,Z(2) = BZρ22

ρU ,Z(2) = AZρ12, ρV ,Z(1) = BZρ21

where AZ and BZ are the matrices whose rows contain the canonical coefficients for
the Z(1) and Z(2) sets, respectively.

Remark. The correlations are unaffected by the standardization, since for example

ρU ,X(1) = AΣ11V
−1/2
11 = AV1/2

11︸ ︷︷ ︸
AZ

V−1/2
11 Σ11V

−1/2
11︸ ︷︷ ︸

ρ
11

= ρU ,Z(1) .
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Remark. The correlations ρU ,X(1) and ρV ,X(2) can help supply meanings for the canon-
ical variates. The spirit is the same as in principal component analysis when the cor-
relations between the principal components and their associated variables may provide
subject-matter interpretations for the components.

9.4 Sample Canonical Variates and Sample Canoni-

cal Correlations

A random sample of n observations on each of the (p + q) variables X(1), X(2) can be
assembled into the n× (p+ q) data matrix

X = (X(1) |X(2)
)

=




x
(1)
11 · · · x

(1)
1p

... x
(2)
11 · · · x

(2)
1q

...
. . .

...
...

...
. . .

...

x
(1)
n1 · · · x

(1)
np

... x
(2)
n1 · · · x

(2)
nq


 =




x
(1)
1

′ ... x
(2)
1

′

...
...

...

x
(1)
n

′ ... x
(2)
n

′


 .

We find x =

(
x(1)

x(2)

)
where x(i) = 1

n

∑n
j=1 x

(i)
j , i = 1, 2 and

S =

(
S11 S12

)
(p×(p+q))

S21 S22 (q×(p+q))

((p+q)×p) ((p+q)×q)

with S12 = S′21

and

Skl =
1

n− 1

n∑

j=1

(x
(k)
j − x(k))(x

(l)
j − x(l))′, k, l = 1, 2. (9.5)

The linear combinations Û = â′x(1) and V̂ = b̂
′
x(2) have sample correlation

rÛ ,V̂ =
â′S12b̂

√
â′S11â

√
b̂
′
S22b̂

. (9.6)

The first pair of sample canonical variates is the pair of linear combinations Û1, V̂1
having unit sample variances that maximizes the ratio (9.6).

In general, the kth pair of sample canonical variates is the pair of linear combinations
Ûk, V̂k having unit sample variances that maximizes the ratio (9.6) among those linear
combinations uncorrelated with the previous k − 1 sample canonical variates.

The sample correlation between Ûk and V̂k is called the kth sample canonical corre-
lation.
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Example (Soil Evaporation, p. 1-8). Table 9.1 and Figure 9.1 show the results of the
canonical correlation analysis of the soil and the air variables.

Table 9.1: Results of the canonical correlation analysis. Data set: Soil Evaporation,
p. 1-8.

> cc.airsoil 

$cor: 

[1] 0.9624326 0.7604630 0.5963187 

 

$xcoef: 

               [,1]          [,2]          [,3]           [,4]           [,5]          [,6]          [,7]   

[1,] -0.00810700994 -0.0131838494 -0.0161725757  0.02517594372  0.04412103124 -0.0579086504 -0.0005754910 

[2,]  0.00216809356 -0.0440762196 -0.0176049769  0.01160575703 -0.08327800431 -0.0336352188 -0.0366291212 

[3,] -0.00470274969  0.0086711986  0.0003125829 -0.00638888876  0.00565562936  0.0235464153  0.0041274285 

[4,]  0.01681633315 -0.0389196441  0.0407784120  0.12108216355 -0.05106799333 -0.0318368973  0.0450208056  

[5,]  0.01080944196 -0.0294491540  0.0218271660 -0.00541588722  0.02269311835 -0.0180959750  0.0190990783 

[6,] -0.00218121839  0.0096778587 -0.0110017742  0.00148441044  0.00070780115  0.0098347719 -0.0065376621 

[7,]  0.00001586807  0.0005137182 -0.0004222563  0.00007431056  0.00004439516 -0.0004388761  0.0009371029 

 

   

$ycoef: 

             [,1]         [,2]        [,3]  

[1,] -0.023889982  0.079116806 -0.02793426 

[2,]  0.006589414  0.007931868 -0.13448882 

[3,] -0.001183075 -0.026269281  0.02816080 

 

$xcenter: 

    maxat    minat  avat     maxh minh     avh     wind  

 90.73913 70.06522 190.5 94.71739 48.5 396.913 277.6739 

 

$ycenter: 

    maxst    minst     avst  

 87.56522 71.26087 173.5217 

 

 

 

Proposition 9.4.1. Let ρ̂∗1
2 ≥ . . . ≥ ρ̂∗p

2
be the p ordered eigenvalues of

S−1/211 S12S
−1
22 S21S

−1/2
11

with corresponding eigenvectors ê1, . . . , êp, where the Skl are defined in (9.5) and p ≤ q.

Let f̂ 1, . . . , f̂ p be the eigenvectors of

S−1/222 S21S
−1
11 S12S

−1/2
22 ,

where the first p eigenvectors f̂ may be obtained from

f̂k =
1

ρ̂∗k
S−1/222 S21S

−1/2
11 êk, k = 1, . . . , p.

Then the kth sample canonical variate pair is

Ûk = ê′kS
−1/2
11︸ ︷︷ ︸

=â′
k

x(1) V̂k = f̂
′
kS
−1/2
22︸ ︷︷ ︸

=b̂
′
k

x(2)

where x(1) and x(2) are the values of the variables X(1) and X(2) for a particular exper-
imental unit.
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Figure 9.1: Results of the canonical correlation analysis. Data set: Soil Evaporation,
p. 1-8.
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Remark. The interpretation of Ûk and V̂k is often aided by computing the sample corre-
lations between the canonical variates and the variables in the sets X(1) and X(2). We
define the matrices

Â = (â1 , . . . , âp)
′

(p×p) (p×1) (p×1)

B̂ = (b̂1 , . . . , b̂q)
′

(q×q) (q×1) (q×1)

whose rows are the coefficient vectors for the sample canonical variates. We find

Û = Â x(1) and V̂ = B̂ x(2)

(p×1) (p×p) (p×1) (q×1) (q×q) (q×1)

and can define

RÛ ,x(1) = matrix of sample correlations of Û with x(1)

RV̂ ,x(2) = matrix of sample correlations of V̂ with x(2)

RÛ ,x(2) = matrix of sample correlations of Û with x(2)

RV̂ ,x(1) = matrix of sample correlations of V̂ with x(1)

and corresponding to (9.3) and (9.4) we find

RÛ ,x(1) = ÂS11D
−1/2
11

RV̂ ,x(2) = B̂S22D
−1/2
22

RÛ ,x(2) = ÂS12D
−1/2
22

RV̂ ,x(1) = B̂S21D
−1/2
11 ,

where D−1/2
11 and D−1/2

22 are the (p × p) and (q × q) diagonal matrix with ith diagonal
element (

sample variance(x
(1)
i )
)−1/2

and
(

sample variance(x
(2)
i )
)−1/2

,

respectively.

9.5 Canonical Correlation Analysis applied to Fields

and Forecasting with Canonical Correlation Anal-

ysis

Source: Wilks (2006) pp. 519-522 (see next pages).
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10 Discrimination and
Classification

10.1 Introduction

Discrimination and classification are multivariate techniques concerned with separating
distinct sets of objects (or observations) and with allocating new objects (observations)
to previously defined groups. Discriminant analysis is rather exploratory in nature. As
a separative procedure, it is often employed on a one-time basis in order to investigate
observed differences when causal relationships are not well understood. Classification
procedures are less exploratory in the sense that they lead to well-defined rules, which
can be used for assigning new objects. Classification ordinarily requires more problem
structure than discrimination does.

Thus, the immediate goals of discrimination and classification, respectively, are as
follows:

� Discrimination (or separation): describes the differential features of objects (ob-
servations) from several known collections (populations). We try to find “discrim-
inants” whose numerical values are such that the collection is separated as much
as possible.

� Classification (or allocation): sorts objects (observations) into two or more labeled
classes. The emphasis is on deriving a rule that can be used to optimally assign
new objects to the labeled classes.

In practice, the two goals frequently overlap, and the distinction between separation
and allocation becomes blurred.

10.2 Separation and Classification for Two Popula-

tions

Example (El Niño). Consider the data set in Table 10.1. With discriminant analysis
we want to classify the years in the data set as either El Niño or non-El Niño, on the
basis of the corresponding temperature and pressure data.

It is convenient to label the classes π1 and π2. The objects are ordinarily separated
or classified on the basis of measurements on, for instance, p associated random variables
X ′ = (X1, . . . , Xp). The observed values of X differ to some extent from one class to the
other. We can think of the totality of values from the first class as being the population
x values for π1 and those from the second class as the population of x values for π2.
These two populations can then be described by probability density functions f1(x) and
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Table 10.1: June climate data for Guayaquil, Ecuador, 1951-1970. Source: Wilks (2006).

Year Temp. (°C) Prec. (mm) Pressure (hPa) El Nino

yes=1, no=0

1951 26.1 43 1009.5 1

1952 24.5 10 1010.9 0

1953 24.8 4 1010.7 1

1954 24.5 0 1011.2 0

1955 24.1 2 1011.9 0

1956 24.3 NA 1011.2 0

1957 26.4 31 1009.3 1

1958 24.9 0 1011.1 0

1959 23.7 0 1012.0 0

1960 23.5 0 1011.4 0

1961 24.0 2 1010.9 0

1962 24.1 3 1011.5 0

1963 23.7 0 1011.0 0

1964 24.3 4 1011.2 0

1965 26.6 15 1009.9 1

1966 24.6 2 1012.5 0

1967 24.8 0 1011.1 0

1968 24.4 1 1011.8 0

1969 26.8 127 1009.3 1

1970 25.2 2 1010.6 0

f2(x), and consequently, we can talk of assigning observations to populations or objects
to classes interchangeably.

A good classification procedure should:

� result in a few misclassifications. In other words, the chances, or probabilities, of
misclassification should be small

� take into account that one class or population has a greater likelihood of occurrence
than another because one of the two populations is relatively much larger than the
other

Example. A randomly selected firm should be classified as nonbankrupt unless
the data overwhelmingly favors bankruptcy.

� whenever possible, account for the costs associated with misclassification.

Classification rules cannot usually provide an error-free method of assignment. This
is because there may not be a clear distinction between the measured characteristics of
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the populations; that is, the groups may overlap. It is then possible, for example, to
incorrectly classify a π2 object as belonging to π1 or a π1 object as belonging to π2.

Let f1(x) and f2(x) be the probability density functions associated with the (p× 1)
random vector X for the populations π1 and π2, respectively. An object with associated
measurements x must be assigned to either π1 or π2. Let Ω be the sample space and R1

that set of x values for which we classify objects as π1 and R2 = Ω−R1 be the remaining
x values for which we classify objects as π2. Since every object must be assigned to one
and only one of the two populations, the sets R1 and R2 are mutually exclusive and
exhaustive. For p = 2, we might have a case like the one pictured in Figure 10.1.

Figure 10.1: Classification regions for two populations. Source: Johnson and Wichern
(2007).

The conditional probability, P (2|1), of classifying an object as π2 when, in fact, it is
from π1 is

P (2|1) = P (X ∈ R2|π1) =

∫

R2

f1(x)dx.

Similarly, the conditional probability, P (1|2), of classifying an object as π1 when it is
really from π2 is

P (1|2) = P (X ∈ R1|π2) =

∫

R1

f2(x)dx.

This is illustrated in Figure 10.2 for the univariate case, p = 1.
Let p1 = P (π1) be the prior probability of π1 and p2 = P (π2) be the prior probability

of π2, where p1 + p2 = 1. Then the overall probabilities of correctly or incorrectly
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Figure 10.2: Misclassification probabilities for hypothetical classification regions. Source:
Johnson and Wichern (2007).

classifying objects can be derived as the product of the prior and conditional classification
probabilities:

P (observation is correctly classified as π1)

= P (observation comes from π1 and is correctly classified as π1)

= P (X ∈ R1|π1)P (π1) = P (1|1)p1

P (observation is misclassified as π1)

= P (observation comes from π2 and is misclassified as π1)

= P (X ∈ R1|π2)P (π2) = P (1|2)p2

P (observation is correctly classified as π2)

= P (observation comes from π2 and is correctly classified as π2)

= P (X ∈ R2|π2)P (π2) = P (2|2)p2

P (observation is misclassified as π2)

= P (observation comes from π1 and is misclassified as π2)

= P (X ∈ R2|π1)P (π1) = P (2|1)p1.

Classification schemes are often evaluated in terms of their misclassification prob-
abilities, but this ignores misclassification costs. A rule that ignores costs may cause
problems. The costs of misclassification can be defined by a cost matrix (Table 10.2)

The costs are zero for correct classification, c(1|2) when an observation from π2 is
incorrectly classified as π1, and c(2|1) when a π1 observation is incorrectly classified as
π2.

For any rule, the average, or expected cost of misclassification (ECM) is provided by
multiplying the off-diagonal entries in Table 10.2 by their probabilities of occurrence.
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Table 10.2: Costs of misclassification

classify as:

π1 π2

true population: π1 0 c(2|1)

π2 c(1|2) 0

Consequently,
ECM = c(2|1)P (2|1) p1 + c(1|2)P (1|2) p2.

A reasonable classification rule should have an ECM as small as possible.

Proposition 10.2.1. The regions R1 and R2 that minimize the ECM are defined by the
values x for which the following inequalities hold:

R1 :
f1(x)

f2(x)︸ ︷︷ ︸
density ratio

≥ c(1|2)

c(2|1)︸ ︷︷ ︸
cost ratio

p2
p1︸︷︷︸

prior prob-
ability ratio

R2 :
f1(x)

f2(x)
<

c(1|2)

c(2|1)

p2
p1

(10.1)

Remark. It is interesting to consider the classification regions defined in (10.1) for some
special cases:

� When the prior probabilities are unknown, they are often taken to be equal, i.e.
p2/p1 = 1, and the minimum ECM rule involves comparing the ratio of the popu-
lation densities to the ratio of the appropriate misclassification costs;

� equal misclassification costs: c(1|2)/c(2|1) = 1;

� equal prior probabilities and equal misclassification costs: p2/p1 = c(1|2)/c(2|1) =
1.

If x0 is a new observation, it is assigned to π1, if

f1(x0)

f2(x0)
≥ c(1|2)

c(2|1)

p2
p1
.

On the other hand, if
f1(x0)

f2(x0)
<
c(1|2)

c(2|1)

p2
p1
,

we assign x0 to π2.
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Remark. There are other criterias to derive “optimal” classification procedures. For
example, choose R1 and R2 to minimize the total probability of misclassification (TPM):

TPM = P (misclassifying a π1 observation or misclassifying a π2 observation)

= P (observation comes from π1 and is misclassified)

+ P (observation comes from π2 and is misclassified)

= p1

∫

R2

f1(x) dx+ p2

∫

R1

f2(x) dx.

Mathematically, this problem is equivalent to minimizing the expected cost of misclas-
sification when the costs of misclassification are equal.

10.2.1 Classification with Two Multivariate Normal Popula-
tions

Classification procedures based on normal populations predominate in statistical prac-
tice because of their simplicity and reasonably high efficiency across a wide variety of
population models. We now assume that f1(x) and f2(x) are multivariate normal densi-
ties, the first with mean vector µ1 and covariance matrix Σ1 and the second with mean
vector µ2 and covariance matrix Σ2. There are two cases to distinguish:

i) Case Σ1 = Σ2 = Σ

Suppose that the joint densities of X ′ = (X1, . . . , Xp) for population π1 and π2 are given
by

fi(x) =
1

(2π)p/2|Σ|1/2 exp
(
−1/2(x− µi)′Σ

−1
(x− µi)

)
for i = 1, 2. (10.2)

� Suppose that µ1, µ2, and Σ are known. Then, the minimum ECM regions in
(10.1) become

R1 : exp
(
−1/2(x− µ1)

′Σ−1(x− µ1) + 1/2(x− µ2)
′Σ−1(x− µ2)

)

≥ c(1|2)

c(2|1)

p2
p1

R2 : exp
(
−1/2(x− µ1)

′Σ−1(x− µ1) + 1/2(x− µ2)
′Σ−1(x− µ2)

)

<
c(1|2)

c(2|1)

p2
p1

Proposition 10.2.2. Let the populations π1 and π2 be described by multivariate
normal densities of the form (10.2). Then the allocation rule that minimizes the
ECM is as follows: Allocate x0 to π1 if

(µ1 − µ2)
′Σ−1x0 − 1/2(µ1 − µ2)

′Σ−1(µ1 + µ2) ≥ ln

(
c(1|2)

c(2|1)

p2
p1

)
. (10.3)

Allocate x0 to π2 otherwise.
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� Suppose that µ1, µ2, and Σ are unknown. Suppose then, that we have n1 obser-
vations of the multivariate normal random vector X ′ = (X1, . . . , Xp) from π1 and
n2 observations of this quantity from π2, with n1 +n2−2 ≥ p. Then the respective
data matrices are

X1 =




x′11
...

x′1n1


 =




x111 . . . x11p
...

. . .
...

x1n11 . . . x1n1p


 and X2 =




x′21
...

x′2n2


 .

(n1×p) (n2×p)

From these data matrices, the sample mean vectors and covariance matrices are
determined by

x1 =
1

n1

n1∑

j=1

x1j, S1 =
1

n1 − 1

n1∑

j=1

(x1j − x1)(x1j − x1)
′

(p×1) (p×p)

x2 =
1

n2

n2∑

j=1

x2j, S2 =
1

n2 − 1

n2∑

j=1

(x2j − x2)(x2j − x2)
′

(p×1) (p×p)

Since it is assumed that the parent populations have the same covariance matrix
Σ, the sample covariance matrices S1 and S2 are combined (pooled) to derive a
single, unbiased estimate of Σ. In particular, the weighted average

Spooled =
n1 − 1

(n1 − 1) + (n2 − 1)
S1 +

n2 − 1

(n1 − 1) + (n2 − 1)
S2

is an unbiased estimate of Σ if the data matrices X1 and X2 contain random
samples from the populations π1 and π2, respectively.

Substituting x1 for µ1, x2 for µ2, and Spooled for Σ in (10.3) gives the “sample”
classification rule:

Proposition 10.2.3. Allocate x0 to π1 if

(x1 − x2)
′S−1pooled x0 − 1/2(x1 − x2)

′S−1pooled(x1 + x2) ≥ ln

(
c(1|2)

c(2|1)

p2
p1

)
.

Allocate x0 to π2 otherwise.

ii) Case Σ1 6= Σ2

As might be expected, the classification rules are more complicated when the population
covariance matrices are unequal. For details see Johnson and Wichern (2007), pp. 593
– 595.

Remark. If the data are not multivariate normal, they can be transformed to data more
nearly normal, and a test for the equality of covariance matrices can be conducted.
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10.2.2 Fisher’s Approach to Classification with Two Popula-
tions

Fisher’s idea was to transform the multivariate observations x to univariate observations
y such that the y’s derived from population π1 and π2 were separated as much as possible.
Fisher suggested taking linear combinations of x to create y’s because they are simple
enough functions of the x to be handled easily. Fisher’s approach does not assume that
the populations are normal. It does, however, implicitly assume that the population
covariance matrices are equal.

Proposition 10.2.4. The linear combination ŷ = â′x = (x1 − x2)
′S−1pooled x maximizes

the ratio

squared distance between sample means of y

sample variance of y
=

(y1 − y2)2
s2y

=
(â′x1 − â′x2)

2

â′Spooled â

over all possible coefficient vectors â (see Figure 10.3). The maximum of the ratio is

D2 = (x1 − x2)
′S−1pooled(x1 − x2).

Figure 10.3: Fisher’s procedure for two populations with p = 2. Source: Johnson and
Wichern (2007).
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Proposition 10.2.5. An allocation rule based on Fisher’s discriminant function: Allo-
cate x0 to π1 if

ŷ0 = (x1 − x2)
′S−1pooled x0

≥ m̂ = 1/2(x1 − x2)
′S−1pooled (x1 + x2).

Allocate x0 to π2 if
ŷ0 < m̂.

Example (El Niño, p. 10-2). In Figure 10.4 the Fisher discriminant function is shown
for the pairs of variables pressure (Pres), temperature (Temp) and precipitation (Prec),
temperature (Temp), respectively. There is one misclassification, namely the year 1953.

Remark. The performance of any classification procedure should always be checked.
Ideally, there will be enough data available to provide for “training” samples and “vali-
dation” samples. The training samples can be used to develop the classification function,
and the validation samples can be used to evaluate its performance.
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Figure 10.4: Discriminant function of the data for Guayaquil. Data set: Table 10.1,
p. 10-2.
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