8 Principal Components Analysis

Further reading. The paper Xoplaki et al. (2000) shows a nice application of the principal
components and canonical correlation analysis method (see Chapter 9).

8.1 Introduction

Example (Weather Report, p. 1-6). The data set consists of sunshine (three variables),
air temperature (six variables), heating degree days (HDD) and precipitation data (five
variables). Figure 8.1 shows a scatterplot matrix of several variables. With the help of
principal component analysis we want to reduce the number of variables, without loosing
a lot of information.

A principal component analysis is concerned with explaining the variance-covariance
structure of a set of variables through a few linear combinations of these variables. Its
general objectives are (1) data reduction and (2) interpretation.

Although p components are required to reproduce the total system variability, often
much of this variability can be accounted for by a small number k£ of the principal
components. If so, there is almost as much information in the k components as there
is in the original p variables. The k principal components can then replace the initial
p variables, and the original data set, consisting of n measurements on p variables, is
reduced to a data set consisting of n measurements on k principal components.

Analyses of principal components are more of a means to an end rather than an
end in themselves, because they frequently serve as intermediate steps in much larger
investigations.

8.2 Population Principal Components

Algebraically, principal components are particular linear combinations of the p random
variables X, ..., X,. Geometrically, these linear combinations represent the selection
of a new coordinate system obtained by rotating the original system with X;,..., X, as
the coordinate axes. The new axes represent the directions with maximum variability
and provide a simpler and more parsimonious description of the covariance structure.

As we shall see, principal components depend solely on the covariance matrix J
(or the correlation matrix P of Xi,...,X,). Their development does not require a
multivariate normal assumption. On the other hand, principal components derived for
multivariate normal populations have useful interpretations in terms of the constant
density ellipsoids. Further, inferences can be done from the sample components when
the population is multivariate normal.

Let the random vector X' = (X1,. .., X,) have the covariance matrix 2J with eigen-
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values A; > ... >\, > 0. Consider the linear combinations

}/1 = a/lX = CL11X1 +...+(l1po

Y, = G;X = CLple + ...+ CLprp.

p
Then, we find
Var(Y;) = a/Xa,, i=1,...,p (8.1)
Cov(Y;, Y3) = aiXay, ik=1,...,p
The principal components are those uncorrelated linear combinations Y;,...,Y, whose

variances in (8.1) are as large as possible.

Definition 8.2.1. We define

First principal component = linear combination @’} Xthat maximizes
Var(a} X) subject to ala; =1
Second principal component = linear combination a),Xthat maximizes

Var(a,X) subject to abas =1 and
Cov(ai1 X,ayX) =0

ith principal component = linear combination a;X that maximizes
Var(a;X) subject to ala; = 1 and
Cov(a;X,a,X) =0 for k <.
Proposition 8.2.2. Let X3 be the covariance matriz associated with the random vector

X' = (Xy,...,X,). Let 3 have eigenvalue-eigenvector pairs (A1, e1), ..., (), e,) where
A1 > ... > )\, > 0. Then the ith principal component is given by

p
Vi=eX =) e;X;, i=1..p (8.3)
j=1

With these choices

Var(V;) = € Xe; = \;, i=1,...,p
COVO/Z‘7 Yk) = egzek = 0, 1 7é k.

Remark. If some \; are equal, the choices of the corresponding coefficient vectors, e;,
and hence Y}, are not unique.
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Proposition 8.2.3. Let X' = (Xy,...,X,) as in Proposition 8.2.2. Then

p p p p
r(X)=> ou=) Var(X;)=> A\ => Var(yj) (8.4)
i=1 i=1 i=1 i=1
and the proportion of total population variance due to the kth principal component
Ak
—_, k=1,...,p.
Zi)=1 Ai

Remark. If most of the total population variance, for large p, can be attributed to the
first one, two or three components, then these components can “replace” the original p
variables without much loss of information.

Remark. The magnitude of e;; — also principal component loading — measures the im-
portance of the kth variable to the ith principal component and thus is a useful basis
for interpretation. A large coefficient (in absolute value) corresponds to a high loading,
while a coefficient near zero has a low loading.

Remark. One important use of principal components is interpreting the original data in
terms of the principal components. The images of the original data under the principal
components transformation are referred to as principal component scores.

Proposition 8.2.4. If Y, = e X,...,Y, = €,X are the principal components obtained
from the covariance matriz 23 then

eik\/)\_i

PYi, X, = ) iLk=1,...,p.
* V Okk
Remark. Suppose X ~ N,(0,3%). Then we have ¢ = Y% y?/\; and this equation
defines an ellipsoid with axes y,...,y, lying in directions of ey, ..., e,, respectively.

8.2.1 Principal Components obtained from Standardized Val-
ues

Principal components may also be obtained for the standardized variables

Xi— i .
7 = Bi o i=1,..p (8.5)
Oi;
or
-1
z- (V") (x-w. (8.6)

where the diagonal standard deviation matrix V2 is defined as

/or 0 .- 0
V2 _ 0 [Gog - 0

0 0 - o
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We find E(Z) = 0 and Cov(Z) = (V‘”Q)_1 > (V”Z)_1 —p.

Remark. The eigenvalue-eigenvector pairs derived from 33 are in general not the same
as the ones derived from p.

Proposition 8.2.5. The ith principal component of the standardized variables Z' =
(Z1,...,Z,) with Cov(Z) = p, is given by

Yi=elZ=é (VW)_1 (X — =1
1T 'l - 7 H)’ /L_ ""7p'

Moreover ) ;
> Var(Y) = Y Var(Z) = p
=1 i=1
and
Py, 2z, = CikV Ais ik=1,...,p.
In this case (A1, e1),...,(Np, e,) are the eigenvalue-eigenvector pairs of P with Ay >
o= A 20,

Remark. Variables should be standardized if they are measured on scales with widely
differing ranges or if the units of measurements are not commensurate.

8.3 Summarizing Sample Variation by Principal Com-
ponents

We now study the problem of summarizing the variation in n measurements on p vari-
ables with a few judiciously chosen linear combinations. Suppose the data xq,...,x,
represent n independent drawings from some p-dimensional population with mean vec-
tor p and covariance matrix Y. These data yield the sample mean vector Z, sample
covariance matrix S and the sample correlation matrix R.

The uncorrelated combinations with the largest variances will be called the sample
principal components. The sample principal components (PC) are defined as those linear



combinations which have maximum sample variance. Specifically,

First sample PC = linear combination ax; that maximizes the

sample variance Var(ajzx;) subject to aja; =1

Second sample PC = linear combination abx; that maximizes the
sample variance Var(abx;) subject to aba; = 1 and

Cov(ajzx;,abx;) =0

ith sample PC = linear combination ajx; that maximizes the
sample variance Var(alx;) subject to a,a;, = 1 and

Cov(aixzj,aix;) =0, k<i.

Proposition 8.3.1. If S = {Sz'k} 18 the px p sample covariance matriz with eigenvalue-

eigenvector pairs (A1, €1), ..., (A, €,) the ith sample principal component is given by
gji:é;m:éﬂxl%—...—i—éipxp, izl,...,p,
where \; > ... > 5\p > 0 and x is any observation on the variable Xy, ..., X,. Also,

sample variance (yx) = M, k=1,...,p,
sample covariance (y;, Jx) = 0, i # k.
In addition

P
total sample variance = Z S =AM+ ...+ A
i=1

and

ExV A
NG

T(gh xk) -

Number of Principal Components

How many components to retain? There is no definitive answer to this question. A
useful visual aid to determining an appropriate number of principal components is a
scree plot. With the eigenvalues ordered from largest to smallest, a scree plot is a plot of
\; versus i. To determine the appropriate number of components, we look for an elbow
(bend) in the scree plot. The number of components is taken to be the point at which
the remaining eigenvalues are relatively small and all about the same size.
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Remark. An unusually small value for the last eigenvalue from either the sample covari-
ance or correlation matrix can indicate an unnoticed linear dependency in the data set
and should therefore not be routinely ignored.

Example (Weather Report, p. 1-6). Figure 8.2 shows the results of the principal com-
ponent analysis calculated with the correlation matrix.
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Figure 8.1: Scatterplot matrix of some variables of the Weather Report, p. 1-6.
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Figure 8.2: Screeplot of the principal components analysis (top left), scatterplot matrix
of the scores calculated with the correlation matrix (top right) and the loadings of the
variables (bottom). Data set: Weather Report, p. 1-6.

8-8



9 Canonical Correlation Analysis

Further reading. Read again the paper Xoplaki et al. (2000) to see how the canonical
correlation analysis method can be applied in climate sciences.

9.1 Introduction

Example (Soil Evaporation, p. 1-8). The observed variables are maximum (maxst),
minimum (minst), and average soil temperature (avst); maximum (maxat), minimum
(minat), and average air temperature (avat); maximum (maxh), minimum (minh), and
average relative humidity (avh); total wind in miles per day (wind) and the daily amount
of evaporation from the soil (evap). The three “average” measurements are integrated:
average soil temperature is the integrated area under the daily soil temperature curve,
average air temperature is the integrated area under the daily air temperature curve,
and average relative humidity is the integrated area under the daily relative humidity
curve.

We want to find the association between the soil variables (maxst, minst and avst)
and the air variables (maxat, minat, avat, maxh, minh, avh, wind).

Canonical correlation analysis (CCA) seeks to identify and quantify the associations
between two sets of variables. Canonical correlation analysis focuses on the correlation
between a linear combination of the variables in one set and a linear combination of the
variables in another set. The idea is first to determine the pair of linear combinations
having the largest correlation. Next, we determine the pair of linear combinations having
the largest correlation among all pairs uncorrelated with the initially selected pair, and
so on. The pairs of linear combinations are called the canonical variables, and their
correlations are called canonical correlations. The canonical correlations measure the
strength of association between the two sets of variables. The maximization aspect
of the technique represents an attempt to concentrate a high-dimensional relationship
between two sets of variables into a few pairs of canonical variables.

9.2 Canonical Variates and Canonical Correlations

We are interested in measures of association between two groups of variables. The first
group, of p variables, is represented by the (p x 1) random vector XV, The second
group, of g variables, is represented by the (¢ x 1) random vector X 2. We assume, in
the theoretical development, that X represents the smaller set, so that p < g.
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For the random vector X and X @ let
E(XM)=p®  Cov(XW) =3,
E(X(Q)) = [.L(Q), COV(X(Q)) = 222
COV(.}((D7 X(Z)) = 212 = 2121

It will be convenient to consider X and X ® jointly, so we find that the random

vector
_ (xW
X (Xw
((p+a)x1)
has mean vector
M(l)
p = E(X)= el
((p+q)x1)

and covariance matrix

Y =E(X - p)(X —p)

_ ( > NP ) (px(p+q))
DI pIP

((pta)xp) ((pt+a)xq)

(gx(p+q))

The covariances between pairs of variables from different sets — one variable from
XW . one variable from X® — are contained in X or, equivalently, in 2is;. That is,
the pg elements of 2J;, measure the association between the two sets. When p and ¢
are relatively large, interpreting the elements of X315 collectively is ordinarily hopeless.
Moreover, it is often linear combinations of variables that are interesting and useful for
predictive or comparative purposes. The main task of canonical correlation analysis is
to summarize the associations between the X and X® sets in terms of a few carefully
chosen covariances (or correlations) rather than the pg covariances in ;5.

Linear combinations provide simple summary measures of a set of variables. Set

U=aXxW
V=0bXx0
for some pair of coefficient vectors a and b. We obtain
Var(U) = a/Cov(XM)a = a'X11a
Var(V) = b'Cov(XP)b = b/X,,b
Cov(U,V) = a'Cov(XV, X )b = a’'3,b.
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We shall seek coefficient vectors a and b such that
G/Elgb
\/a’zna\/b'zggb

Cor(U,V) = (9.1)

is as large as possible.

Definition 9.2.1. We define:

First pair of canonical variables (first canonical variate pair): pair of linear combi-
nations Uy, V) having unit variances, which maximizes the correlation (9.1)

Second pair of canonical variables (second canonical variate pair): pair of linear
combinations Uy, V5 having unit variances, which maximize the correlation (9.1) among
all choices that are uncorrelated with the first pair of canonical variables.

At the kth step,

The kth pair of canonical variables (kth canonical variate pair): pair of linear com-
binations Uy, Vi having unit variances, which maximize the correlation (9.1) among all
choices uncorrelated with the previous k£ — 1 canonical variable pairs.

The correlation between the kth pair of canonical variables is called the kth canonical
correlation.

Proposition 9.2.2. Suppose p < q and let the random vectors XV and X® have
Cov(XW) = X4y, Cov(X?) = 3y, and Cov(XV, X3) = X, = 3}, where X has
full rank. For coefficient vectors a and b, form the linear combinations U = ' XY and
V=bX®. Then
max Cor(U,V) = pj
18 attained by the linear combinations
U= e 3,2 X0 and Vi = 13,7 X
—— ————
ay by

The kth pair of canonical variates, k = 2,...,p,

U, =e,3,° X0 and V= £,3,7°x®

mazrimaizes

Cor(Uk, Vi) = pj,
amonyg those linear combinations uncorrelated with the preceding 1,2, ...,k —1 canonical
variables.

Here (p})* > ... > (p3)? are the eigenvalues of 2P LE )Y, 20, andey, .. ., e,
are the associated (p x 1) eigenvectors.
The canonical variates have the properties
Var(Uy) = Var(Vy) =1
Cov(Uy, U;) = Cov(Vi, Vi) = Cov(Uy, V;) =0
Cor(Uy, U;) = Cor(Vy, V;) = Cor(Uy, V;) = 0.

fork,1=1,2,...,p with k # (.



Remark. The quantities (pj)* > ... > (p;)* are also the p largest eigenvalues of the
matrix

DIIED IS S IS Sl

with corresponding (¢ x 1) eigenvectors f, ..., fp. Each f, is proportional to
I YD ILr s

Remark. If the original variables are standardized with Z) = (Zfl), . .,ZI(;I))’ and
zZ® = (ZF), .., ZPY the canonical variates are of the form

Uy :a’Z“): / p_1/2Z(1)
Vi = 6,2 = fpy, * 2 (9-2)

Here, Cov(ZV) = p,,, Cov(Z?) = p,,, Cov(ZW, Z(Q)) P> = Ph; and e and
J. are the eigenvectors of p1_11/2p12p2_21p21p1_11/2 and p2_2 p21p11 p12p22 , respec-

tively. The canonical correlations, pj, satisfy
Cor(Ug, Vi) = py, k=1,...,p,

where (p})* > ... > (p})? are the nonzero eigenvalues of the matrix py; /> PP P P’

or, equivalently, the largest eigenvalues of p22 p21 P PP /2

Remark. The canonical coefficients for the standardized variables,

1 1
71 _ Xi( ) —ME )

(3
O

are simply related to the canonical coefficients attached to the original variables Xi(l).

Specifically, if a;, is the coefficient vector for the kth canonical variate Uy, then a%V}f
is the coefficient vector for tP% kth canonical variate constructed from the standard-
ized variables Z1. Here V1{ is the diagonal matrix with the ith diagonal element

Vi = Var(Xi(l)). Similarly, b;V;éz is the coefficient vector for the canonical variate

constructed from the set of standardized variables Z®. The canonical correlations are
unchanged by the standardization.

9.3 Interpreting the Population Canonical Variables

Canonical variables are, in general, artificial. That is, they have no physical meaning.
If the original variables X and X are used the canonical coefficients a and b
have units proportional to those of the XM and X@ sets. If the original variables
are standardized to have zero means and unit variances, the canonical coefficients have
no units of measurement, and they must be interpreted in terms of the standardized
variables.



9.3.1 Identifying the Canonical Variables

Even though the canonical variables are artificial, they can be “identified” in terms of
the subject-matter variables. Many times this identification is aided by computing the
correlations between the canonical variates and the original variables. These correlations,
however, must be interpreted with caution. They provide only univariate information,
in the sense that they do not indicate how the original variables contribute jointly to the
canonical analyses. For this reason, many investigators prefer to assess the contributions
of the original variables directly from the standardized coefficients (9.2).

Let A = (ai,...,a,) and B = (by,...,b,), so that the vectors of canonical variables
are
U = A X ad Vv = B Xx®
(px1) (pxp)  (px1) (gx1) (9xq)  (gx1)

where we are primarily interested in the first p canonical variables in V.
Introducing the (p x p) diagonal matrix Vl_ll/ ? with kth diagonal element

N —1/2
i = (varx) ™"

we find i
wr) Pyxm = Cor(U,XW)=Cov(U V" XV)

= Cov(AXW V[ 2PXx0) = AS,, V2
Similar calculations for the pairs (U, X®), (V, X®) and (V, X)) yield
xq) Py x> = AEHV;;/Q

(axq) Py x@ = B222V2_21/2 (9.4)
(axp) Py xv = B221V1_11/27

(9.3)

where VQ_;/ ?is the (¢ x q) diagonal matrix with the ith diagonal element

o Y2 = (Var(Xi(Q))>

(22

—-1/2

Canonical variables derived from standardized variables are sometimes interpreted
by computing the correlations. Thus

pU,Z<1> = Azpn, pv,z<2> = BZP22
Puzer =AzpPy,, Py o =Bzpy

where A, and B are the matrices whose rows contain the canonical coefficients for
the ZM and Z® sets, respectively.

Remark. The correlations are unaffected by the standardization, since for example
—1/2 1/2x7-1/2 ~1/2
Pu xm = AEHVH/ = AV1{ Vn/ Ellvn/ = Puy,zm-
W\ ~~ >y
A-Z pll

9-5



Remark. The correlations Py xm and Py x can help supply meanings for the canon-
ical variates. The spirit is the same as in principal component analysis when the cor-
relations between the principal components and their associated variables may provide
subject-matter interpretations for the components.

9.4 Sample Canonical Variates and Sample Canoni-
cal Correlations

A random sample of n observations on each of the (p + ¢) variables X M X@ can be
assembled into the n x (p + ¢) data matrix
X — (X(l) | X(Q))
1 1 . 2 2 1) - 2)/
R
xﬁl) . x%) : xffl) _ x%) A
B () e
We find T = ) where ' = 23>0 27, i=1,2 and
S S
S — ( 11 12 ) (px(p+q)) with S, — S/21
Sa1 Sos (ax(p+q))
((p+a)xp)  ((p+a)xq)
and
RS k) — o —
Su=——> (=) ~z¥) @l ~z0y,  ki=12 (95)
j=1
The linear combinations U = @'z and V = b z? have sample correlation
a'Sob
o = (9.6)

Va'S, a\/b Syyb

The first pair of sample canonical variates is the pair of linear combinations Uy, Vi
having unit sample variances that maximizes the ratio (9.6).

In general, the kth pair of sample canonical variates is the pair of linear combinations
Uk, Vi, having unit sample variances that maximizes the ratio (9.6) among those linear
combinations uncorrelated with the previous £ — 1 sample canonical variates.

The sample correlation between Uy, and Vj is called the kth sample canonical corre-
lation.



Example (Soil Evaporation, p. 1-8). Table 9.1 and Figure 9.1 show the results of the
canonical correlation analysis of the soil and the air variables.

Table 9.1: Results of the canonical correlation analysis. Data set: Soil Evaporation,
p- 1-8.

> cc.airsoil
Scor:
[1] 0.9624326 0.7604630 0.5963187

$xcoef:
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.00810700994 -0.0131838494 -0.0161725757 0.02517594372 0.04412103124 -0.0579086504 -0.0005754910
[2,] 0.00216809356 -0.0440762196 -0.0176049769 0.01160575703 -0.08327800431 -0.0336352188 -0.0366291212
[3,] -0.00470274969 0.0086711986 0.0003125829 -0.00638888876 0.00565562936 0.0235464153 0.0041274285
[4,] 0.01681633315 -0.0389196441 0.0407784120 0.12108216355 -0.05106799333 -0.0318368973 0.0450208056
[5,] 0.01080944196 -0.0294491540 0.0218271660 -0.00541588722 0.02269311835 -0.0180959750 0.0190990783
[6,] -0.00218121839 0.0096778587 -0.0110017742 0.00148441044 0.00070780115 0.0098347719 -0.0065376621
[7,7 0.00001586807 0.0005137182 -0.0004222563 0.00007431056 0.00004439516 -0.0004388761 0.0009371029
Sycoef

[,1] [,2] [,3]
[1,] -0.023889982 0.079116806 -0.02793426
[2,] 0.006589414 0.007931868 -0.13448882
[3,] -0.001183075 -0.026269281 0.02816080
Sxcenter:

maxat minat avat maxh minh avh wind

90.73913 70.06522 190.5 94.71739 48.5 396.913 277.6739

Sycenter:
maxst minst avst
87.56522 71.26087 173.5217

~2 o~
Proposition 9.4.1. Let p; > ... > ,0;;2 be the p ordered eigenvalues of

S.'*S1,S.,' S, S,

with corresponding eigenvectors €1, . . ., &,, where the Sy, are defined in (9.5) and p < q.
Let fy,..., f, be the eigenvectors of

S, /*S,8.,'S1,S,,"%,

where the first p eigenvectors f may be obtained from

- 1 =12 1/2.
kaT* /Szls /ek, k‘:L...,p.
Pr

Then the kth sample canonical variate pair is

~ 1/2

U, = e, S, W Vk—fk 1/2 )
H,_/

Al ~/
=ag =by,

where £V and 2 are the values of the variables XV and X® for a particular exper-
imental unait.
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Figure 9.1: Results of the canonical correlation analysis. Data set: Soil Evaporation,
p- 1-8.
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Remark. The interpretation of Uy, and Vj, is often aided by computing the sample corre-
lations between the canonical variates and the variables in the sets X and X®. We
define the matrices

A == (dl goee ey dp)/
(pxp) (px1) (px1)
B = (b ,.... b,
(axq) (gx1) (gx1)

whose rows are the coefficient vectors for the sample canonical variates. We find

U = A 20 and Vv = B z®
(px1) (pxp)  (px1) (gx1) (gxq)  (gx1)
and can define
RU,w(l) — matrix of sample correlations of U with 2"
RV@@) — matrix of sample correlations of V' with «®
RU@@) — matrix of sample correlations of U with &
RV,;B(D — matrix of sample correlations of V with "

and corresponding to (9.3) and (9.4) we find

A ~1/2
RU,a:(l) — ASHDH/
Ry 0 = BS,,D,,"”
Ry, = AS,D;"
R’V,m(l) = BSQlD;11/27
where Dl_ll/ ? and D2_21/ ? are the (p x p) and (g x ¢) diagonal matrix with ith diagonal

element
(1)

7 7

2) >—l/2

~1/2
(sample variance(x )) and <Sample variance(x;”’)

respectively.

9.5 Canonical Correlation Analysis applied to Fields
and Forecasting with Canonical Correlation Anal-
ysis

Source: Wilks (2006) pp. 519-522 (see next pages).
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12.2 CCA Applied to Fields

12.2.1 Translating Canonical Vectors to Maps

Canonical correlation analysis is usually most interesting for atmospheric data when
applied to fields. Here the spatially distributed observations (either at gridpoints or observ-
ing locations) are encoded into the vectors x and y in the same way as for PCA. That is,
even though the data may pertain to a two- or three-dimensional field, each location is
numbered sequentially and pertains to one element of the corresponding data vector. It is
not necessary for the spatial domains encoded into x and y to be the same, and indeed in
the applications of CCA that have appeared in the literature they are usually different.

As is the case with the use of PCA with spatial data, it is often informative to plot
maps of the canonical vectors by associating the magnitudes of their elements and the
geographic locations to which they pertain. In this context the canonical vectors are
sometimes called canonical patterns, since the resulting maps show spatial patterns of the
ways in which the original variables contribute to the canonical variables. Examining
the pairs of maps formed by corresponding vectors @, and b, can be informative about the
nature of the relationship between variations in the data over the two domains encoded in
x and y, respectively. Figures 12.2 and 12.3 show examples of maps of canonical vectors.

It can also be informative to plot pairs of maps of the homogeneous (Equation 12.7)
or heterogeneous correlations (Equation 12.8). Each of these vectors contain correlations
between an underlying data field and one of the canonical variables, and these correlations
can also be plotted at the corresponding locations. Figure 12.1, from Wallace et al.
(1992), shows one such pair of homogeneous correlation patterns. Figure 12.1a shows
the spatial distribution of correlations between a canonical variable v, and the values of
the corresponding data x that contains values of average December-February sea-surface
temperatures (SSTs) in the north Pacific Ocean. This canonical variable accounts for 18%
of the total variance of the SSTs in the data set analyzed (Equation 12.12). Figure 12.1b
shows the spatial distribution of the correlations for the corresponding canonical variable
w, that pertains to average hemispheric 500 mb heights y during the same winters included
in the SST data in x. This canonical variable accounts for 23% of the total variance of the
winter hemispheric height variations. The correlation pattern in Figure 12.1a corresponds
to either cold water in the central north Pacific and warm water along the west coast
of North America, or warm water in the central north Pacific and cold water along the
west coast of North America. The pattern of 500 mb height correlations in Figure 12.1b
is remarkably similar to the PNA pattern (cf. Figures 11.10b and 3.28).

The correlation between the two time series v and w is the canonical correlation
1o = 0.79. Because v and w are well correlated, these figures indicate that cold SSTs in the
central Pacific simultaneously with warm SSTs in the northeast Pacific (relatively large
positive v) tend to coincide with a 500 mb ridge over northwestern North America and a
500 mb trough over southeastern North America (relatively large positive w). Similarly,
warm water in the central north Pacific and cold water in the northwestern Pacific
(relatively large negative v) are associated with the more zonal PNA flow (relatively large
negative w).

12.2.2 Combining CCA with PCA

The sampling properties of CCA can be poor when the available data are few relative
to the dimensionality of the data vectors. The result can be that sample estimates for
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FIGURE 12.1 Homogeneous correlation maps for a pair of canonical variables pertaining to (a) aver-
age winter sea-surface temperatures (SSTs) in the northern Pacific Ocean, and (b) hemispheric winter
500mb heights. The pattern of SST correlation in the left-hand panel (and its negative) are associ-
ated with the PNA pattern of 500 mb height correlations shown in the right-hand panel. The canonical
correlation for this pair of canonical variables is 0.79. From Wallace er al. (1992).

CCA parameters may be unstable (i.e., exhibit large variations from batch to batch)
for small samples (e.g., Bretherton er al. 1992; Cherry 1996; Friedrerichs and Hense
2003). Friedrerichs and Hense (2003) describe, in the context of atmospheric data, both
conventional parametric tests and resampling tests to help assess whether sample canonical
correlations may be spurious sampling artifacts. These tests examine the null hypothesis
that all the underlying population canonical correlations are zero.

Relatively small sample sizes are common when analyzing time series of atmospheric
fields. In CCA, it is not uncommon for there to be fewer observations n than the
dimensions / and J of the data vectors, in which case the necessary matrix inversions



cannot be computed (see Section 12.3). However, even if the sample sizes are large
enough to carry through the calculations, sample CCA statistics are erratic unless n >> M.
Barnett and Preisendorfer (1987) suggested that a remedy for this problem is to prefilter
the two fields of raw data using separate PCAs before subjecting them to a CCA, and this
has become a conventional procedure. Rather than directly correlating linear combinations
of the fields x" and y’, the CCA operates on the vectors u, and u,, which consist of the
leading principal components of x’' and y’. The truncations for these two PCAs (i.e., the
dimensions of the vectors u, and u,) need not be the same, but should be severe enough
for the larger of the two to be substantially smaller than the sample size n. Livezey and
Smith (1999) provide some guidance for the subjective choices that need to be made in
this approach.

This combined PCA/CCA approach is not always best, and can be inferior if important
information is discarded when truncating the PCA. In particuiar, there is no guarantee
that the most strongly correlated linear combinations of x and y will be well related to
the leading principal components of one field or the other.



10 Discrimination and
Classification

10.1 Introduction

Discrimination and classification are multivariate techniques concerned with separating
distinct sets of objects (or observations) and with allocating new objects (observations)
to previously defined groups. Discriminant analysis is rather exploratory in nature. As
a separative procedure, it is often employed on a one-time basis in order to investigate
observed differences when causal relationships are not well understood. Classification
procedures are less exploratory in the sense that they lead to well-defined rules, which
can be used for assigning new objects. Classification ordinarily requires more problem
structure than discrimination does.

Thus, the immediate goals of discrimination and classification, respectively, are as
follows:

e Discrimination (or separation): describes the differential features of objects (ob-
servations) from several known collections (populations). We try to find “discrim-
inants” whose numerical values are such that the collection is separated as much
as possible.

e Classification (or allocation): sorts objects (observations) into two or more labeled
classes. The emphasis is on deriving a rule that can be used to optimally assign
new objects to the labeled classes.

In practice, the two goals frequently overlap, and the distinction between separation
and allocation becomes blurred.

10.2 Separation and Classification for Two Popula-
tions

Example (El Nino). Consider the data set in Table 10.1. With discriminant analysis
we want to classify the years in the data set as either El Nino or non-El Nino, on the
basis of the corresponding temperature and pressure data.

It is convenient to label the classes m; and m5. The objects are ordinarily separated
or classified on the basis of measurements on, for instance, p associated random variables
X' = (Xi,...,X,). The observed values of X differ to some extent from one class to the
other. We can think of the totality of values from the first class as being the population
x values for m; and those from the second class as the population of @ values for ms.
These two populations can then be described by probability density functions f;(x) and
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Table 10.1: June climate data for Guayaquil, Ecuador, 1951-1970. Source: Wilks (2006).

Year Temp. (°C) Prec.(mm) Pressure (hPa) El Nino

yes=1, no=0
1951 26.1 43 1009.5 1
1952 24.5 10 1010.9 0
1953 24.8 4 1010.7 1
1954 24.5 0 1011.2 0
1955 24.1 2 1011.9 0
1956 24.3 NA 1011.2 0
1957 26.4 31 1009.3 1
1958 24.9 0 1011.1 0
1959 23.7 0 1012.0 0
1960 23.5 0 1011.4 0
1961 24.0 2 1010.9 0
1962 24.1 3 1011.5 0
1963 23.7 0 1011.0 0
1964 24.3 4 1011.2 0
1965 26.6 15 1009.9 1
1966 24.6 2 1012.5 0
1967 24.8 0 1011.1 0
1968 24.4 1 1011.8 0
1969 26.8 127 1009.3 1
1970 25.2 2 1010.6 0

fa(x), and consequently, we can talk of assigning observations to populations or objects
to classes interchangeably.
A good classification procedure should:

e result in a few misclassifications. In other words, the chances, or probabilities, of
misclassification should be small

e take into account that one class or population has a greater likelihood of occurrence
than another because one of the two populations is relatively much larger than the
other

Example. A randomly selected firm should be classified as nonbankrupt unless
the data overwhelmingly favors bankruptcy.

e whenever possible, account for the costs associated with misclassification.

Classification rules cannot usually provide an error-free method of assignment. This
is because there may not be a clear distinction between the measured characteristics of
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the populations; that is, the groups may overlap. It is then possible, for example, to
incorrectly classify a m, object as belonging to m or a m; object as belonging to 5.
Let fi(x) and fa(x) be the probability density functions associated with the (p x 1)
random vector X for the populations 7 and 7y, respectively. An object with associated
measurements & must be assigned to either m; or my. Let €2 be the sample space and R,
that set of & values for which we classify objects as m; and Ry = {2 — Ry be the remaining
x values for which we classify objects as 7. Since every object must be assigned to one
and only one of the two populations, the sets R; and R, are mutually exclusive and
exhaustive. For p = 2, we might have a case like the one pictured in Figure 10.1.

ey 1

Figure 10.1: Classification regions for two populations. Source: Johnson and Wichern

(2007).

The conditional probability, P(2|1), of classifying an object as my when, in fact, it is
from 7y is

P(2|]1) = P(X € Ry|m) = ; fi(zx)de.
Similarly, the conditional probability, P(1|2), of classifying an object as m; when it is
really from my is
P(1]12) = P(X € Ry|my) = ; fo(x)dex.
1
This is illustrated in Figure 10.2 for the univariate case, p = 1.

Let p; = P(m) be the prior probability of 71 and p; = P(m3) be the prior probability
of my, where p; + po = 1. Then the overall probabilities of correctly or incorrectly
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PRID = [f, () dx

P12) = [, () dx R,
- fg (x)
> X
-« R, - R, >
Classify as m, Classify as 7,

Figure 10.2: Misclassification probabilities for hypothetical classification regions. Source:

Johnson and Wichern (2007).

classifying objects can be derived as the product of the prior and conditional classification
probabilities:

P(observation is correctly classified as )
= P(observation comes from 7 and is correctly classified as )
= P(X € Ry|m)P(m) = P(1]1)p
P(observation is misclassified as )
= P(observation comes from 7y and is misclassified as )
= P(X € Ry|m)P(m) = P(1]2)p2
P(observation is correctly classified as m5)
= P(observation comes from 7y and is correctly classified as m5)
= P(X € Ry|m)P(ma) = P(2]2)ps
P(observation is misclassified as )
= P(observation comes from 7y and is misclassified as )
= P(X € Ry|m)P(m) = P(2|1)ps.

Classification schemes are often evaluated in terms of their misclassification prob-
abilities, but this ignores misclassification costs. A rule that ignores costs may cause
problems. The costs of misclassification can be defined by a cost matrix (Table 10.2)

The costs are zero for correct classification, ¢(1]/2) when an observation from 7y is
incorrectly classified as 71, and ¢(2|1) when a m; observation is incorrectly classified as
.

For any rule, the average, or expected cost of misclassification (ECM) is provided by
multiplying the off-diagonal entries in Table 10.2 by their probabilities of occurrence.
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Table 10.2: Costs of misclassification

classify as:

Uy 2

true population:

T 0
o | ¢(1]2) 0

c(2|1)

Consequently,

ECM = c(2]1)P(2|1) p1 + c(1]2) P(1]2) ps.

A reasonable classification rule should have an ECM as small as possible.

Proposition 10.2.1. The regions Ry and Ry that minimize the ECM are defined by the
values x for which the following inequalities hold:

fi(z)
fa(z)

——

density ratio

fi(z)
fo(x)

Rli

RQZ

c(1]2) P2
c2l)  p
N—— ~~

cost ratio  prior prob-
ability ratio

c1l2)  p2
c(2|1) DP1

(10.1)

Remark. It is interesting to consider the classification regions defined in (10.1) for some

special cases:

e When the prior probabilities are unknown, they are often taken to be equal, i.e.
p2/p1 = 1, and the minimum ECM rule involves comparing the ratio of the popu-
lation densities to the ratio of the appropriate misclassification costs;

e cqual misclassification costs: ¢(1|2)/c(2|1) = 1;

e equal prior probabilities and equal misclassification costs: po/p1 = ¢(1]2)/c(2]1) =

1.

If &y is a new observation, it is assigned to 7y, if

On the other hand, if

we assign xq to mo.

fil@o) _ c(112) po
Fo(wo) = @) p1°
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Remark. There are other criterias to derive “optimal” classification procedures. For
example, choose Ry and Ry to minimize the total probability of misclassification (TPM):
TPM = P(misclassifying a m observation or misclassifying a my observation)

= P(observation comes from 7y and is misclassified)

+ P(observation comes from 7, and is misclassified)
=p [ f(x)de+p, [ folx)de.
RQ R1

Mathematically, this problem is equivalent to minimizing the expected cost of misclas-
sification when the costs of misclassification are equal.

10.2.1 Classification with Two Multivariate Normal Popula-
tions

(Classification procedures based on normal populations predominate in statistical prac-
tice because of their simplicity and reasonably high efficiency across a wide variety of
population models. We now assume that fi(x) and fo(x) are multivariate normal densi-
ties, the first with mean vector g, and covariance matrix 2J; and the second with mean
vector p, and covariance matrix ;. There are two cases to distinguish:

i) Case 2J; = Xy = X3

Suppose that the joint densities of X' = (X3, ..., X,) for population 7; and 7y are given
by
1 p— .

e Suppose that gy, p,, and 2 are known. Then, the minimum ECM regions in
(10.1) become

RBi:exp (—=1/2(@ = ) S @ - ) +1/2(2 - o) S (@ )
c(1]2) p2
~c(2(1) py
Ry exp (=172 — )5 (@ — )+ 1/2(@ — ) S (@ — o))
c(1]2) ps
c(2[1) p1
Proposition 10.2.2. Let the populations m and m be described by multivariate

normal densities of the form (10.2). Then the allocation rule that minimizes the
ECM 1is as follows: Allocate xy to m if

(1 — o) S 0 — 1201 — 1) S r + 1) > In (g:ii ﬁj—) o (103)

Allocate xq to w9 otherwise.
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e Suppose that pq, p2, and X3 are unknown. Suppose then, that we have n; obser-
vations of the multivariate normal random vector X’ = (X, ..., X,) from m and
no observations of this quantity from o, with n; +ny —2 > p. Then the respective
data matrices are

/ /
T 111 <. T11p Ty
X, = : = oo and X, =
/ /
Lin, Lingl -+ Llngp Lon,
(n1xp) (n2xp)

From these data matrices, the sample mean vectors and covariance matrices are
determined by

_ RS 1 _ _
ry = o Zmlja S, = 1 Z(CBU —Z1) (215 — 1)
L= n1 j=1
(px1) (pxp)
1 n2 1 n2
Ty = — ) Ty, S, = To; — To)(To; — Ty)'
2 g JZI 27 2 Ny — 1 jl( 27 2)( 27 2)
(px1) (pxp)

Since it is assumed that the parent populations have the same covariance matrix
3}, the sample covariance matrices S; and S, are combined (pooled) to derive a
single, unbiased estimate of 2. In particular, the weighted average
ny — 1 S No — 1
1+ S,
n1—1)+<n2—1) (n1—1)+(n2—1)

is an unbiased estimate of X if the data matrices X; and X, contain random
samples from the populations m; and 79, respectively.

Spooled - (

Substituting @, for p;, Ty for py, and Speeea for 2 in (10.3) gives the “sample”
classification rule:

Proposition 10.2.3. Allocate xqy to m if

— — -1 — — -1 — —
(wl - w2)/ pooled TO — 1/2($1 - mQ)/ pooled(ml + $2) > In (

Allocate xq to my otherwise.

ii) Case 21 7é 22

As might be expected, the classification rules are more complicated when the population
covariance matrices are unequal. For details see Johnson and Wichern (2007), pp. 593
— 595.

Remark. If the data are not multivariate normal, they can be transformed to data more
nearly normal, and a test for the equality of covariance matrices can be conducted.
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10.2.2 Fisher’s Approach to Classification with Two Popula-
tions

Fisher’s idea was to transform the multivariate observations & to univariate observations
y such that the y’s derived from population m; and m, were separated as much as possible.
Fisher suggested taking linear combinations of & to create y’s because they are simple
enough functions of the @ to be handled easily. Fisher’s approach does not assume that
the populations are normal. It does, however, implicitly assume that the population
covariance matrices are equal.

Proposition 10.2.4. The linear combination § = a'x = (T, — @)’S;Oi)ledm mazximizes
the ratio

squared distance between sample means of y (Y, — Us)?

sample variance of y s2

(a'T, — a'z,)?

~/ ~
a Spooled a

over all possible coefficient vectors a (see Figure 10.3). The mazimum of the ratio is

— — —1 — —
D2 = (ml - 332)/ pooled(ml - $2).

Figure 10.3: Fisher’s procedure for two populations with p = 2. Source: Johnson and

Wichern (2007).
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Proposition 10.2.5. An allocation rule based on Fisher’s discriminant function: Allo-
cate xqy to my if

. N
Yo = (ml - $2) pooled L0
-1

> m = 1/2(E1 - iQ)/ pooled (fl + §2)

Allocate xq to ms if
o < M.

Example (El Nino, p. 10-2). In Figure 10.4 the Fisher discriminant function is shown
for the pairs of variables pressure (Pres), temperature (Temp) and precipitation (Prec),
temperature (Temp), respectively. There is one misclassification, namely the year 1953.

Remark. The performance of any classification procedure should always be checked.
Ideally, there will be enough data available to provide for “training” samples and “vali-
dation” samples. The training samples can be used to develop the classification function,
and the validation samples can be used to evaluate its performance.
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Figure 10.4: Discriminant function of the data for Guayaquil. Data set: Table

p. 10-2.
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