
7 Linear Regression Models

Regression analysis concerns the study of relationships between quantitative variables
with the object of identifying, estimating, and validating the relationship. It is the sta-
tistical methodology for predicting values of one or more response (dependent) variables
from a collection of predictor (independent) variable values. It can also be used for
assessing the effects of the predictor variables on the responses.

We first show an example of simple linear regression model for the prediction of a
single response with one single explanatory variable. This model is then generalized to
handle the prediction of one dependent variable with several independent variables.

Example (Basel, p. 1-6). Figure 1.5, p. 1-15, shows a strong linear relationship between
the annual heating degree days and annual mean temperature for Basel. To find an
appropriate model we can use the method of (simple) linear regression.

Example (Weather Report, p. 1-6). We want to examine the linear relationship between
the altitude and the annual mean temperature for different stations in Switzerland (see
Figure 7.1). The slope of the line can be interpreted as the lapse rate, which is the
decrease of temperature with height. The environmental lapse rate, is the rate of de-
crease of temperature with altitude in the stationary atmosphere at a given time and
location. As an average, the International Civil Aviation Organization (ICAO) defines
an international standard atmosphere with a temperature lapse rate of 6.49 ◦C/1000 m
from sea level to 11 km. Source: Wikipedia.

7.1 Multiple Linear Regression

Example (Basel, p. 1-6). We are interested to find a linear model for the annual cloudi-
ness in Basel. Figure 1.5, p. 1-15, supports the assumption that there is a linear rela-
tionship between annual cloudiness as dependent variable on one hand and the annual
sunshine duration and annual precipitation as explanatory variables on the other hand.
We consider the time period 1980-2000.

The classical linear regression model states that Y is composed of a mean, which
depends in a continuous manner on the zi’s, and a random error ε, which accounts for
measurement error and the effects of other variables not explicitly considered in the
model. The values of the predictor variables recorded from the experiment or set by
the investigator are treated as fixed. The error is viewed as a random variable whose
behavior is characterized by a set of distributional assumptions. Specifically, the linear
regression model with a single response takes the form

Y = β0 + β1z1 + . . .+ βrzr + ε

response mean (depending on z1, . . . , zr) error

(7.1)
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Figure 7.1: Plot of the annual mean temperatures as a function of the altitude for the
different Swiss stations. Data set: Weather Report, p. 1-6.

Remark. The term linear refers to the fact that the mean is a linear function of the
unknown parameters β0, . . . , βr. The predictor variables may or may not enter the
model as first-order terms.

Remark. Figure 7.2 shows the notation that will be used in this chapter.

With n independent observations on Y and the associated values of zi, the complete
model becomes

Y1 = β0 + β1z11 + . . .+ βrz1r + ε1
... (7.2)

Yn = β0 + β1zn1 + . . .+ βrznr + εn

where the error terms are assumed to have the properties

E(εi) = 0, Var(εi) = σ2, Cov(εi, εj) = 0, i 6= j. (7.3)
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Figure 7.2: Notation for the linear regression.

Definition 7.1.1. In matrix notation, the classical linear regression model (7.2) becomes




Y1
...

Yn


 =




1 z11 · · · z1r
...

...

1 zn1 · · · znr







β0
...

βr


 +




ε1
...

εn




Y = Z β + ε

(n×1) (n×(r+1)) ((r+1)×1) (n×1)

and the specifications in (7.3)

E(ε) = 0 and Cov(ε) = E(εε′) = σ2I. (7.4)

β and σ2 are unknown parameters and the design matrix Z has jth row (zj0, . . . , zjr)
with zj0 = 1.

7.2 Least Squares Estimation

One of the objectives of regression analysis is to develop an equation that will allow the
investigator to predict the response for given values of the predictor variables. Thus, it
is necessary to “fit” the model in Definition 7.1.1 to the observed yi corresponding to
the known values 1, zj1, . . . , zjr. That is, we must determine the values for the regression
coefficients β and the error variance σ2 consistent with the available data.
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Let b be the trial values for β. The method of least squares selects b so as to minimize
the sum of squares of the differences:

S(b) =
n∑

j=1

(yj − b0 − b1zj1 − . . .− brzjr)2

= (y −Zb)′(y −Zb).

The coefficients b chosen by the least squares criterion are called least squares estimates
of the regression parameter β. They will henceforth be denoted by β̂ to emphasize their
role as estimates of β.

The coefficients β̂ are consistent with the data in the sense that they produce esti-
mated (fitted) mean responses, β̂0 + β̂1zj1 + . . .+ β̂rzjr, the sum of whose squares of the
differences from the observed yi is as small as possible. The deviations

ε̂j = yj − β̂0 − β̂1zj1 − . . .− β̂rzjr, j = 1, . . . , n (7.5)

are called residuals. The vector of residuals

ε̂ = y −Zβ̂

contains the information about the remaining unknown parameter σ2.

Proposition 7.2.1. Let Z have full rank r + 1 ≤ n. The least squares estimate of β is
given by

β̂ =
(
Z′Z

)−1
Z′y.

Let ŷ = Zβ̂ = Hy denote the fitted values of y, where H = Z
(
Z′Z

)−1
Z′ is called

hat matrix. Then the residuals

ε̂ = y − ŷ = (I−H)y

satisfy Z′ε̂ = 0 and ŷ′ε̂ = 0. Also, the the residual sum of squares are

n∑

j=1

(yj − β̂0 − β̂1zj1 − . . .− β̂rzjr)2 = ε̂′ε̂ = y′y − y′Zβ̂.

Sum of Squares (SS) Decomposition

According to Proposition 7.2.1, we have ŷ′ε̂ = 0 and therefore the total sum of squares
y′y =

∑n
j=1 y

2
j satisfies

y′y = ŷ′ŷ + ε̂′ε̂. (7.6)

We find the basic decomposition of the sum of squares about the mean as

y′y − ny2 = ŷ′ŷ − n(ŷ)2 + ε̂′ε̂
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or
n∑

j=1

(yj − y)2 =
n∑

j=1

(ŷj − y)2 +
n∑

j=1

ε̂2j

Total SS about mean Regression SS Residual (error) SS

(7.7)

The preceding sum of squares decomposition suggests that the quality of the models fit
can be measured by the coefficient of determination

R2 := 1−

n∑

j=1

ε̂2j

n∑

j=1

(yj − y)2
=

n∑

j=1

(ŷj − y)2

n∑

j=1

(yj − y)2
.

Remark. Interpretation: The quantity R2 gives the proportion of the total variation in
the yj’s explained by the predictor variables z1, . . . , zr. Here R2 = 1 if the fitted equation
passes through all the data points, so that ε̂j = 0 for all j. At the other extreme, R2 = 0

if β̂0 = y and β̂1 = . . . = β̂r = 0. In this case, the predictor variables z1, . . . , zr have no
influence on the response.

Sampling Properties of Classical Least Squares Estimators

The least squares estimator β̂ and the residuals ε̂ have the sampling properties detailed
in the next proposition.

Proposition 7.2.2. Under the general linear regression model in Definition 7.1.1, the

least squares estimator β̂ =
(
Z′Z

)−1
Z′Y has

E(β̂) = β and Cov(β̂) = σ2
(
Z′Z

)−1
.

The residuals ε̂ have the properties

E(ε̂) = 0 and Cov(ε̂) = σ2(I−H).

Also E(ε̂′ε̂) = (n− r − 1)σ2, so defining

s2 :=
ε̂′ε̂

n− (r + 1)
=
Y ′(I−H)Y

n− r − 1

we have
E(s2) = σ2.

Moreover, β̂ and ε̂ are uncorrelated.
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7.3 Inferences about the Regression Model

We describe inferential procedures based on the classical linear regression model in Defi-
nition 7.1.1 with the additional assumption that the errors ε have a normal distribution.

Inferences concerning the Regression Parameters

Before we can assess the importance of particular variables in the regression function

E(Y ) = β0 + β1z1 + . . .+ βrzr

we must determine the sampling distributions of β̂ and the residual sum of squares, ε̂′ε̂.
To do so, we shall assume that the errors ε have a normal distribution.

Proposition 7.3.1. Let Y = Zβ+ε, where Z has full rank r+1 and ε is distributed as
Nn(0, σ2I). Then the maximum likelihood estimator of β is the same as the least squares
estimator β̂. Moreover,

β̂ =
(
Z′Z

)−1
Z′Y is distributed as Nr+1

(
β, σ2

(
Z′Z

)−1)

and is distributed independently of the residuals ε̂ = Y −Zβ̂. Further

nσ̂2 = ε̂′ε̂ is distributed as σ2χ2
n−r−1

where σ̂2 is the maximum likelihood estimator of σ2.

Remark. A confidence ellipsoid for β is easily constructed. It is expressed in terms of

the estimated covariance matrix s2
(
Z′Z

)−1
, where s2 = ε̂′ε̂/(n− r − 1).

Proposition 7.3.2. Let Y = Zβ + ε, where Z has full rank r + 1 and ε is distributed
as Nn(0, σ2I). Then a (1− α) confidence region for β is given by

(β − β̂)′Z′Z(β − β̂) ≤ (r + 1)s2Fr+1,n−r−1(α)

where Fr+1,n−r−1(α) is the upper (100α)th percentile of an F -distribution with r+ 1 and
n− r − 1 d.f.

Also, simultaneous (1− α) confidence intervals for the βi are given by

β̂i ±
√

V̂ar(β̂i)
√

(r + 1)Fr+1,n−r−1(α), i = 0, 1, . . . , r,

where V̂ar(β̂i) is the diagonal element of s2
(
Z′Z

)−1
corresponding to β̂i.

Remark. Practitioners often ignore the “simultaneous” confidence property of the inter-
val estimates in Proposition 7.3.2. Instead, they replace (r + 1)Fr+1,n−r−1(α) with the
one-at-a-time t value tn−r−1(α/2) and use the intervals

β̂i ± tn−r−1(α/2)

√
V̂ar(β̂i).
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7.3.1 Likelihood Ratio Tests for the Regression Parameters

Part of regression analysis is concerned with assessing the effects of particular pre-
dictor variables on the response variable. One null hypothesis of interest states that
certain of the zi’s do not influence the response Y . These predictors will be labeled
zq+1, zq+2, . . . , zr. So

H0 : βq+1 = βq+2 = . . . = βr = 0 or H0 : β(2) = 0 (7.8)

where β′(2) = (βq+1, βq+2, . . . , βr).
Setting

Z = ( Z1 | Z2 ), β = ( β(1) | β(2) )′

(n×(q+1)) (n×(r−q)) ((q+1)×1) ((r−q)×1)
(7.9)

we can express the general linear model as

Y = Zβ + ε = (Z1|Z2)

(
β(1)

β(2)

)
+ ε = Z1β(1) + Z2β(2) + ε. (7.10)

Proposition 7.3.3. Let Y = Zβ + ε, where Z has full rank r + 1 and ε be distributed
as Nn(0, σ2I). Then the null hypothesis H0 : β(2) = 0 is rejected if

(SSres(Z1)− SSres(Z))/(r − q)
s2

> Fr−q,n−r−1(α),

where

Extra SS = SSres(Z1)− SSres(Z) = (y −Z1β̂(1))
′(y −Z1β̂(1))− (y −Zβ̂)′(y −Zβ̂),

β̂(1) =
(
Z′1Z1

)−1
Z′1y and Fr−q,n−r−1(α) is the upper (100α)th percentile of an F -

distribution with r − q and n− r − 1 d.f.

Remark. To test whether all coefficients in a subset are zero, fit the model with and
without the terms corresponding to these coefficients. The improvement in the residual
sum of squares is compared to the residual sum of squares for the full model via the
F -ratio.

7.4 Inferences from the Estimated Regression Func-

tion

Once an investigator is satisfied with the fitted regression model, it can be used to solve
two prediction problems. Let z′0 = (1, z01, . . . , z0r) be selected values for the predictor
variables. Then z0 and β̂ can be used to estimate
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� the regression function β0 + β1z01 + . . .+ βrz0r at z0 and

� the value of the response Y at z0.

Example (Weather Report, p. 1-6). We have found a strong linear relationship between
the altitude and the annual mean temperature based on different stations in Switzerland.
Now we have two different kinds of prediction: In the first case we are interested in
estimating the mean annual temperature for the population consisting on all points
at a given altitude. In the second case we are interested to a single station and we
want to predict the specific mean annual temperature of this station. The prediction is
still determined from the fitted line. However, the standard error of the prediction is
larger, because a single observation is more uncertain than the mean of the population
distribution.

Estimating the Regression Function at z0

Let Y0 denote the value of the response when the predictor variables have values z′0 =
(1, z01, . . . , z0r). According to the model in Definition 7.1.1, the expected value of Y0 is

E(Y0|z0) = β0 + β1z01 + . . .+ βrz0r = z′0β.

Its least squares estimate is z′0β̂.

Proposition 7.4.1. For the linear regression model in Definition 7.1.1, z′0β̂ is the unbi-

ased linear estimator of E(Y0|z0) with minimum variance, Var(z′0β̂) = z′0

(
Z′Z

)−1
z0 σ

2.

If the errors ε are normally distributed, then a (1−α) confidence interval for E(Y0|z0) =
z′0β is given by

z′0β̂ ± tn−r−1(α/2)

√
(z′0

(
Z′Z

)−1
z0)s2

where tn−r−1(α/2) is the upper 100(α/2)th percentile of a t-distribution with n − r − 1
d.f.

Forecasting a New Observation at z0

Prediction of a new observation, such as Y0, at z′0 = (1, z01, . . . , z0r) is more uncertain
than estimating the expected value of Y0. According to the model in Definition 7.1.1,

Y0 = z′0β + ε0

new response Y0 expected value of Y0 at z0 new error

where ε0 is distributed as N(0, σ2) and is independent of ε and, hence, of β̂ and s2. The
errors ε influence the estimators β̂ and s2 through the responses Y , but ε0 does not.
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Proposition 7.4.2. Given the linear regression model in Definition 7.1.1, a new obser-
vation Y0 has the unbiased predictor

z′0β̂ = β̂0 + β̂1z01 + . . .+ β̂rz0r.

The variance of the forecast error Y0 − z′0β̂ is

Var(Y0 − z′0β̂) = σ2

(
1 + z′0

(
Z′Z

)−1
z0

)
.

When the errors ε have a normal distribution, a (1 − α) prediction interval for Y0 is
given by

z′0β̂ ± tn−r−1(α/2)

√
s2
(

1 + z′0

(
Z′Z

)−1
z0

)
,

where tn−r−1(α/2) is the upper 100(α/2)th percentile of a t-distribution with n − r − 1
d.f.

Remark. Prediction is an important goal of most modeling efforts. To reduce the chance
of overfitting the data the K-fold cross-validation procedure is recommended:

1. Divide the data into K subsets of approximately equal size. This is usually done
randomly. If there is concern about ensuring that each subset is similar according
to some criterion, a statistical design can be used to partition the data. The
number of model parameters is a factor in selecting K because the desire is to
maintain as many degrees as possible for estimating the error. A split that results
in fewer than 30 observations in the training set is not recommended.

2. Each subset is removed from the sample data and a prediction made using the
remaining data. Thus, there are K models. Corresponding to each model is a data
set not used in that estimation.

3. Estimate the response variable in the corresponding omitted data set for each
model.

4. The prediction error is an average of results made from each of the k “omitted
subsets.”

A special case of this procedure is the leave-one-out cross validation, which uses n
training sets of size n− 1.

7.5 Model Checking and other Aspects of Regres-

sion

Model evaluation is critical. It is necessary to know if the model is satisfactory for the
job asked of it. Every statistical model and estimation technique carries with it a set
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of assumptions. In linear regression, these assumptions include normally distributed
independent errors with constant variance. When assumptions fail to hold, statistical
tests of significance may be invalid and model estimates can be seriously biased. A
challenge in model evaluation is that all assumptions are not of equal importance. With
experience one learns that some assumptions may be relaxed without doing significant
harm to model results, whereas others can be critical. Methods to evaluate a model
include an examination of statistics produced by the model-fitting procedure. This
investigation involves formal hypothesis testing and examination of descriptive statistics
and graphs. Graphs are essential. One needs to view a variety of model evaluation tools
because no single statistic or graph gives complete information on the quality of a model.

Does the Model fit?

Assuming that the model is “correct”, we have used the estimated regression function to
make inferences. Of course, it is imperative to examine the adequacy of the model before
the estimated function becomes a permanent part of the decision-making apparatus.

All the sample information on lack of fit is contained in the residuals

ε̂1 = y1 − β̂0 − β̂1z11 − . . .− β̂rz1r
ε̂2 = y2 − β̂0 − β̂1z21 − . . .− β̂rz2r

...

ε̂n = yn − β̂0 − β̂1zn1 − . . .− β̂rznr

or

ε̂ =

(
I−Z

(
Z′Z

)−1
Z′
)
y = (I−H)y.

If the model is valid, each residual ε̂j is an estimate of the error εj, which is assumed to
be a normal random variable with mean zero and variance σ2. Although the residuals ε̂

have expected value 0, their covariance matrix σ2(I −Z
(
Z′Z

)−1
Z′) = σ2(I −H) is

not diagonal. Residuals have unequal variances and nonzero correlations. Fortunately,
the correlations are often small and the variances are nearly equal.

Residuals should be plotted in various ways to detect possible anomalies. For general
diagnostic purposes, the following are useful graphs:

1. Plot the residuals ε̂j against the predicted values ŷi. Departures from the assump-
tions of the model are typically indicated by two types of phenomena:

� A dependence of the residuals on the predicted value (see Figure 7.3 (a)).
The numerical calculations are incorrect, or a β0 term has been omitted from
the model.

� The variance is not constant. The pattern of residuals may be funnel shaped,
as in Figure 7.3(b), so that there is large variability for large ŷ and small
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Figure 7.3: Residual plots. Source: Johnson and Wichern (2007).

variability for small ŷ. If this is the case, the variance of the error is not
constant, and transformations or a weighted least squares approach (or both)
are required. In Figure 7.3(d), the residuals form a horizontal band. This is
ideal and indicates equal variances and no dependence on ŷ.

2. Plot the residuals ε̂j against a predictor variable, such as z1, or products of pre-
dictor variables, such as z21 or z1z2. A systematic pattern in these plots suggests
the need for more terms in the model (see Figure 7.3(c)).

3. QQ-plots and histograms: Do the errors appear to be normally distributed? The
QQ-plots and histograms help to detect the presence of unusual observations or
severe departures from normality that may require special attention in the analysis.

4. Plot the residuals versus time: the assumption of independence is crucial, but hard
to check. If the data are naturally chronological, a plot of the residuals versus time
may reveal a systematic pattern. For instance, residuals that increase over time
indicate a strong positive dependence.
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Example (MeteoSchweiz 2007, p. 1-6). Consider the data set in Chapter 1.3.4 and the
Figure 7.1. How good is the fitted linear regression model? Figure 7.4 shows several
plots to answer this question:

� Plot of the response against the fitted values: gives a good idea of how well the
model has captured the broad outlines of the data.

� Plot of the residuals against the fitted values: often reveals unexplained structure
left in the residuals, which in a strong model should appear as nothing but noise.

� Square root of absolute residuals against fitted values: useful in identifying outliers
and visualizing structure in the residuals.

� Normal quantile plot of residuals: provides a visual test of the assumption that
the model’s errors are normally distributed.

� Residual-Fit spread plot: compares the spread of the fitted values with the spread
of the residuals. Since the model is an attempt to explain the variation in the
data, you hope that the spread in the fitted values is much greater than that in
the residuals.

� Cooks distance plot: measure of the influence of individual observations on the
regression coefficients.

Example (Basel, p. 1-6). The report (see Table 7.1) and the residual plots (see Figure
7.5) of the multiple linear regression model confirms that the multiple linear regression
model is appropriate for modelling the cloudiness as a function of the annual sunshine
duration and annual precipitation.

Remark. When a multiple regression model is constructed, variables based on theory,
results of exploratory data analysis, and intuition are often included. It is common that
not all of these variables will be statistically significant. Before a model is put in service,
should these nonsignificant variables be eliminated? Here are some guidelines:

� If the sample size is large, omit variables that are not statistically significant.

� If the sample size is small, err on the side of retaining variables.

� If theory suggests that a variable should be present, err on the side of retaining it.
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Figure 7.4: Residual plots of the annual mean temperatures as a function of the altitude
of the different Swiss stations. Data set: Weather Report, p. 1-6.
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Figure 7.5: Residual plots of the annual cloudiness for Basel as a function of the annual
sunshine duration and annual precipitation. Data set: Basel, p. 1-6.
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Table 7.1: Summary of the multiple linear regression of the annual cloudiness for Basel
as a function of the annual sunshine duration and annual precipitation. Data set: Basel,
p. 1-6.

Call: lm(formula = clouds ~ precipitation + sunshine, data = daten, na.action = na.omit)

Residuals:

    Min     1Q Median    3Q   Max 

 -3.658 -1.177  0.292 1.226 2.983

Coefficients:

                 Value Std. Error  t value Pr(>|t|) 

  (Intercept)  87.2684   6.5377    13.3484   0.0000

precipitation   0.0096   0.0036     2.6632   0.0158

     sunshine  -0.0167   0.0030    -5.6428   0.0000

Residual standard error: 1.872 on 18 degrees of freedom

Multiple R-Squared: 0.7633      Adjusted R-squared: 0.737 

F-statistic: 29.03 on 2 and 18 degrees of freedom, the p-value is 2.33e-006 

------------------------------------------------------------------------------------

Shapiro-Wilk Normality Test

W = 0.9722, p-value = 0.7809 

------------------------------------------------------------------------------------

One sample Kolmogorov-Smirnov Test of Composite Normality

ks = 0.1255, p-value = 0.5 

alternative hypothesis: True cdf is not the normal distn. with estimated parameters 

sample estimates:

      mean of x standard deviation of x 

 -2.114711e-017                 1.77608

------------------------------------------------------------------------------------
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