
5 Inferences about a Mean Vector

In this chapter we use the results from Chapter 2 through Chapter 4 to develop tech-
niques for analyzing data. A large part of any analysis is concerned with inference –
that is, reaching valid conclusions concerning a population on the basis of information
from a sample.

At this point, we shall concentrate on inferences about a population mean vector
and its component parts. One of the central messages of multivariate analysis is that p
correlated variables must be analyzed jointly.

Example (Bern-Chur-Zürich, p. 1-4). In Keller (1921) we find values for the annual
mean temperature, annual precipitation and annual sunshine duration for Bern, Chur
and Zürich (see Table 5.1). Note that the locations of the weather stations, where these
values have been measured, have changed in the meantime as the different altitudes
indicate. We use the values of Keller (1921) for Bern as reference (population mean)
and compare them with the time series (sample mean) for Bern from MeteoSchweiz.

Table 5.1: Temperature, precipitation and sunshine duration for Bern, Zürich and Chur.
Source: Keller (1921).

Station Temperature Precipitation Sunshine duration

Bern (572 m) 7.8 ◦C 922 mm 1781 h

Chur (600 m) NA 803 mm NA

Zürich (493 m) 8.5 ◦C 1147 mm 1671 h

Remark. A hypothesis is a conjecture about the value of a parameter, in this section
a population mean or means. Hypothesis testing assists in making a decision under
uncertainty.

5.1 Plausibility of µ0 as a Value for a Normal Pop-

ulation Mean

Example (Climate Time Series, p. 1-3). Assume that we know the population mean
average winter temperatures µ for the six Swiss stations Bern, Davos, Genf, Grosser St.
Bernhard, Säntis and Sils Maria. We want to answer the question, whether the mean
average temperatures µ0 of the years 1950-2002 differ from µ. Figure 5.1 shows the
scatterplot matrix of these six stations. We see, that there is one very cold year. Figure
5.2 shows the boxplots of the data set with and without the very cold winter 1962 as
well as the population mean and the corresponding chi-square plots.
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Figure 5.1: Scatterplot matrix of the mean average winter temperatures for six Swiss
stations from 1950-2002. Data set: Climate Time Series, p. 1-3.
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Figure 5.2: Boxplots and chi-square plots of the mean average winter temperature for
the six Swiss stations from 1950-2002. The circles in the boxplots show the population
mean µ, the squares the overall sample mean for the period 1950-2002 with and without
1962. Data set: Climate Time Series, p. 1-3.
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5.1.1 Univariate case

Let us start with the univariate theory of determining whether a specific value µ0 is a
plausible value for the population mean µ. For the point of view of hypothesis testing,
this problem can be formulated as a test of the competing hypotheses

H0 : µ = µ0 and H1 : µ 6= µ0.

Here H0 is the null hypothesis and H1 is the two-sided alternative hypothesis. If
X1, . . . , Xn be a random sample from a normal population, the appropriate test statistic
is

t =
X − µ0

s/
√
n
, (5.1)

where X = 1
n

∑n
j=1Xj and s2 = 1

n−1
∑n

j=1(Xj −X)2. This test statistic has a student’s
t-distribution with n− 1 degrees of freedom (d.f.). We reject H0, that µ0 is a plausible
value of µ, if the observed |t| exceeds a specified percentage point of a t-distribution with
n− 1 d.f.

From (5.1) it follows that

t2 = n(X − µ0)(s
2)−1(X − µ0). (5.2)

Reject H0 in favor of H1 at significance level α, if

n(x− µ0)(s
2)−1(x− µ0) > t2n−1(α/2), (5.3)

where t2n−1(α/2) denotes the upper 100(α/2)th percentile of the t-distribution with n−1
d.f.

IfH0 is not rejected, we conclude that µ0 is a plausible value for the normal population
mean. From the correspondence between acceptance regions for tests of H0 : µ =
µ0 versus H1 : µ 6= µ0 and confidence intervals for µ, we have

∣∣∣∣
x− µ0

s/
√
n

∣∣∣∣ ≤ tn−1(α/2)

⇐⇒ { do not reject H0 : µ = µ0 at level α}

⇐⇒
{
µ0 lies in the (1− α) confidence interval x± tn−1(α/2)

s√
n

}

⇐⇒ x− tn−1(α/2)
s√
n
≤ µ0 ≤ x+ tn−1(α/2)

s√
n
.

Remark. Before the sample is selected, the (1−α) confidence interval is a random interval
because the endpoints depend upon the random variables X and s. The probability that
the interval contains µ is 1 − α; among large numbers of such independent intervals,
approximately 100(1− α)% of them will contain µ.
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5.1.2 Multivariate Case

Example (Bern-Chur-Zürich, p. 1-4). Keller (1921) cites the following climatologi-
cal variables for Bern (572 m): Annual mean temperature 7.8 ◦C, annual precipitation
922 mm and annual sunshine duration 1781 h. Assume that these values form the ref-
erence vector (population mean vector). Now we compare this vector with the time
series (sample mean vectors) of Bern given from MeteoSchweiz for the two time periods
1930-1960 and 1960-1990. We state in the null hypothesis that the sample mean vectors
of temperature, precipitation, sunshine duration are the same as the reference vector of
temperature, precipitation and sunshine duration.

Consider now the problem of determining whether a given p×1 vector µ0 is a plausible
value for the mean of a multivariate normal distribution. We have the hypotheses

H0 : µ = µ0 and H1 : µ 6= µ0.

A natural generalization of the squared distance in (5.2) is its multivariate analog

T 2 = (X − µ0)
′
(

1

n
S
)−1

(X − µ0)

where

(p×1) X =
1

n

n∑

j=1

Xj

(p×p) S =
1

n− 1

n∑

j=1

(Xj −X)(Xj −X)′ (p×1)(1×p)

(p×1) µ0 = (µ10, . . . , µp0)
′

The T 2-statistic is called Hotelling’s T 2. We reject H0, if the observed statistical distance
T 2 is too large – that is, if x is too far from µ0. It can be shown that

T 2 ∼ (n− 1)p

n− p Fp,n−p, (5.4)

where Fp,n−p denotes a random variable with an F -distribution with p and n− p d.f.
To summarize, we have the following proposition:

Proposition 5.1.1. Let X1, . . . ,Xn be a random sample from an Np(µ,Σ) population.
Then

α = P

(
T 2 >

(n− 1)p

n− p Fp,n−p(α)

)

= P

(
n(X − µ)′S−1(X − µ) >

(n− 1)p

n− p Fp,n−p(α)

)
(5.5)

whatever the true µ and Σ. Here Fp,n−p(α) is the upper (100α)th percentile of the Fp,n−p
distribution.
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Statement (5.5) leads immediately to a test of the hypothesis H0 : µ = µ0 versus H1 :
µ 6= µ0. At the α level of significance, we reject H0 in favor of H1 if the observed

T 2 = n(x− µ0)
′S−1(x− µ0) >

(n− 1)p

n− p Fp,n−p(α). (5.6)

Remark. The T 2-statistic is invariant under changes in the units of measurements for X
of the form

Y = C X + d

(p×1) (p×p) (p×1) (p×1)

with C nonsingular.

5.2 Confidence Regions and Simultaneous Compar-

isons of Component Means

To obtain our primary method for making inferences from a sample, we need to extend
the concept of a univariate confidence interval to a multivariate confidence region. Let
θ be a vector of unknown population parameters and Θ be the set of all possible values
of θ. A confidence region is a region of likely θ values. This region is determined by
the data, and for the moment, we shall denote it by R(X), where X = (X1, . . . ,Xn)′

is the data matrix. The region R(X) is said to be a (1− α) confidence region if, before
the sample is selected,

P
(
R(X) will cover the true θ

)
= 1− α.

This probability is calculated under the true, but unknown, value of θ.

Proposition 5.2.1. Let X1, . . . ,Xn be a random sample from an Np(µ,Σ) population.
Before the sample is selected, the confidence region for the mean µ is given by

P

(
n(X − µ)′S−1(X − µ) ≤ (n− 1)p

n− p Fp,n−p(α)

)
= 1− α

whatever the values of the unknown µ and Σ.
For a particular sample, x and S can be computed, and we find a (1−α) confidence

region for the mean of a p-dimensional normal distribution as the ellipsoid determined
by all µ such that

n(x− µ)′S−1(x− µ) ≤ (n− 1)p

n− p Fp,n−p(α) (5.7)

where x = 1
n

∑n
j=1 xj, S = 1

n−1
∑n

j=1(xj − x)(xj − x)′ and x1, . . . ,xn are the sample
observations.
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Any µ0 lies within the confidence region (is a plausible value for µ) if the distance

n(x− µ0)
′S−1(x− µ0) ≤

(n− 1)p

n− p Fp,n−p(α). (5.8)

Since this is analogous to testing H0 : µ = µ0 versus H1 : µ 6= µ0, we see that the
confidence region of (5.7) consists of all µ0 vectors for which the T 2-test would not
reject H0 in favor of H1 at significance level α.

Remark. We can calculate the axes of the confidence ellipsoid and their relative lengths.
These are determined from the eigenvalues λi and eigenvectors ei of S. As in (4.1), the
directions and lengths of the axes of

n(x− µ)′S−1(x− µ) ≤ c2 =
(n− 1)p

n− p Fp,n−p(α) (5.9)

are determined by going

√
λic√
n

=
√
λi

√
p(n− 1)

n(n− p)Fp,n−p(α)

units along the eigenvectors ei. Beginning at the center x, the axes of the confidence
ellipsoid are

±
√
λi

√
p(n− 1)

n(n− p)Fp,n−p(α) ei

where
Sei = λiei, i = 1, . . . , p.

Example (Bern-Chur-Zürich, p. 1-4). Figure 5.3 shows that for the period 1930-1960
the confidence regions with the sample mean (big circle) includes the population mean
(large triangle). Therefore the null hypothesis can not be rejected and we conclude that
the sample mean vector does not differ from the population mean vector.

Figure 5.4 corresponds to the time period 1960-1990 and here we see, that both
95% confidence regions do not include the population mean vectors (large triangles).
So in this case the null hypothesis of equal means can be rejected. To see why the
null hypothesis is rejected a univariate analysis can be done, comparing separately all
components.

5.2.1 Simultaneous Confidence Statements

While the confidence region n(x − µ)′S−1(x − µ) ≤ c2, for c a constant, correctly as-
sesses the joint knowledge concerning plausible values of µ, any summary of conclusions
ordinarily includes confidence statements about the individual component means. In
so doing, we adopt the attitude that all of the separate confidence statements should
hold simultaneously with a specified high probability. It is the guarantee of a specified

5-7



sunshine

p
re

c
ip

it
a
ti
o
n

1400 1600 1800 2000

8
0
0

1
0
0
0

1
2
0
0

Scatterplot Bern 1930-1960 
 95% confidence region for the mean value

temperature

p
re

c
ip

it
a
ti
o
n

6.5 7.0 7.5 8.0 8.5 9.0

8
0
0

1
0
0
0

1
2
0
0

Scatterplot Bern 1930-1960 
 95% confidence region for the mean value

Figure 5.3: Confidence regions for the pairs sunshine-precipitation and temperature-
precipitation with the corresponding population mean (large triangle). Data set: Bern-
Chur-Zürich, p. 1-4.

probability against any statement being incorrect that motivates the term simultaneous
confidence intervals.

We begin by considering simultaneous confidence statements which are related to
the joint confidence region based on the T 2-statistic. Let X ∼ Np(µ,Σ) and form the
linear combination

Z = a1X1 + . . .+ apXp = a′X.

Then

µZ = E(Z) = a′µ,

σ2
Z = Var(Z) = a′Σa and

Z ∼ N(a′µ,a′Σa).

If a random sample X1, . . . ,Xn from the Np(µ,Σ) population is available, a corre-
sponding sample of Z’s can be created by taking linear combinations. Thus

Zj = a′Xj, j = 1, . . . , n.
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Figure 5.4: Confidence regions for the pairs sunshine-precipitation and temperature-
precipitation with the corresponding population mean (large triangle). Data set: Bern-
Chur-Zürich, p. 1-4.

The sample mean and variance of the observed values z1, . . . , zn are z = a′x and s2z =
a′Sa, where x and S are the sample mean vector and the covariance matrix of the xj’s,
respectively.

Case i: a fixed

For a fixed and σ2
z unknown, a (1 − α) confidence interval for µz = a′µ is based on

student’s t-ratio

t =
z − µZ
sz/
√
n

=

√
n(a′x− a′µ)√

a′Sa
and leads to the statement

a′x− tn−1(α/2)

√
a′Sa√
n
≤ a′µ ≤ a′x+ tn−1(α/2)

√
a′Sa√
n

, (5.10)

where tn−1(α/2) is the upper 100(α/2)th percentile of a t-distribution with n− 1 d.f.
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Example. For a′ = (1, 0, . . . , 0), a′µ = µ1, and (5.10) becomes the usual confidence
interval for a normal population mean. Note, in this case, a′Sa = s11.

Remark. Of course we could make several confidence statements about the components
of µ, each with associated confidence coefficient 1− α, by choosing different coefficient
vectors a. However, the confidence associated with all of the statements taken together
is not 1− α.

Remark. Intuitively, it would be desirable to associate a “collective” confidence coeffi-
cient of 1 − α with the confidence intervals that can be generated by all choices of a.
However, a price must be paid for the convenience of a large simultaneous confidence
coefficient: intervals that are wider (less precise) than the interval of (5.10) for a specific
choice of a.

Case ii: a arbitrary

Given a data set x1, . . . ,xn and a particular a, the confidence interval in (5.10) is that
set of a′µ values for which

t2 =
n(a′(x− µ))2

a′Sa
≤ t2n−1(α/2). (5.11)

A simultaneous confidence region is given by the set of a′µ values such that t2 is
relatively small for all choices of a. It seems reasonable to expect that the constant
t2n−1(α/2) in (5.11) will be replaced by a larger value, c2, when statements are developed
for many choices of a.

Considering the values of a for which t2 ≤ c2, we are naturally led to the determina-
tion of

max
a

t2 = max
a

n(a′(x− µ))2

a′Sa
.

Using the maximization lemma (Johnson and Wichern (2007), p. 80) we get

max
a

n(a′(x− µ))2

a′Sa
= n(x− µ)′S−1(x− µ) = T 2 (5.12)

with the maximum occurring for a proportional to S−1(x− µ).

Example. Let µ′ = (0, 0), x′ = (1, 2) and S =

(
1 2

2 100

)
. Then

n(a′x)2

a′Sa
= n

(a1 + 2a2)
2

(a1 + 2a2)2 + 96a22

has its maximum at a′ = (c, 0) with c 6= 0, which is proportional to S−1x = (1, 0)′.
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Proposition 5.2.2. Let X1, . . . ,Xn be a random sample from an Np(µ,Σ) population
with Σ positive definite. Then, simultaneously for all a, the interval

(
a′X −

√
(n− 1)p

n(n− p)Fp,n−p(α)a′Sa, a′X +

√
(n− 1)p

n(n− p)Fp,n−p(α)a′Sa

)
(5.13)

will contain a′µ with probability 1− α.

Proof. From (5.12)

T 2 = n(x− µ)′S−1(x− µ) ≤ c2 implies
n(a′(x− µ))2

a′Sa
≤ c2

for every a, or

a′x− c
√
a′Sa
n
≤ a′µ ≤ a′x+ c

√
a′Sa
n

for every a. Choosing c2 = (n−1)p
n−p Fp,n−p(α) (compare equation (5.4)) gives intervals that

will contain a′µ for all a, with probability 1− α = P (T 2 ≤ c2).

It is convenient to refer to the simultaneous intervals of (5.13) as T 2-intervals, since
the coverage probability is determined by the distribution of T 2. The successive choices
a′ = (1, 0, . . . , 0), a′ = (0, 1, . . . , 0), and so on through a′ = (0, 0, . . . , 1) for the T 2-
intervals allow us to conclude that

x1 −
√

(n− 1)p

(n− p) Fp,n−p(α)

√
s11
n
≤ µ1 ≤ x1 +

√
(n− 1)p

(n− p) Fp,n−p(α)

√
s11
n

x2 −
√

(n− 1)p

(n− p) Fp,n−p(α)

√
s22
n
≤ µ2 ≤ x2 +

√
(n− 1)p

(n− p) Fp,n−p(α)

√
s22
n

...

xp −
√

(n− 1)p

(n− p) Fp,n−p(α)

√
spp
n
≤ µp ≤ xp +

√
(n− 1)p

(n− p) Fp,n−p(α)

√
spp
n

all hold simultaneously with confidence coefficient 1− α.

Example (Climate Time Series, p. 1-3). Figure 5.5 shows the 95% confidence ellipse
and the simultaneous T 2-intervals for the component means of the mean average winter
temperatures for Bern and Davos.

Remark. Note that, without modifying the coefficient 1 − α, we can make statements
about the differences µi − µk corresponding to a′ = (0, . . . , 0, ai, 0, . . . , 0, ak, 0, . . . , 0),
where ai = 1 and ak = −1. In this case a′Sa = sii − 2sik + skk.
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Figure 5.5: 95% confidence ellipse and the simultaneous T 2-intervals for the component
means as projections of the confidence ellipse on the axes. Data set: Climate Time
Series, p. 1-3.

Remark. The simultaneous T 2 confidence intervals are ideal for “data snooping”. The
confidence coefficient 1−α remains unchanged for any choice of a, so linear combinations
of the components µi that merit inspection based upon an examination of the data can
be estimated.

Remark. The simultaneous T 2 confidence intervals for the individual components of a
mean vector are just the projections of the confidence ellipsoid on the component axes.

5.2.2 Comparison of Simultaneous Confidence Intervals with
One-at-a-time Intervals

An alternative approach to the construction of confidence intervals is to consider the
components µi one at a time, as suggested by (5.10) with a′ = (0, . . . , 0, ai, 0, . . . , 0)
where ai = 1. This approach ignores the covariance structure of the p variables and
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leads to the intervals

x1 − tn−1(α/2)

√
s11
n
≤ µ1 ≤ x1 + tn−1(α/2)

√
s11
n

...

xp − tn−1(α/2)

√
spp
n
≤ µp ≤ xp + tn−1(α/2)

√
spp
n
.

Example (Climate Time Series, p. 1-3). Figure 5.6 shows the 95% confidence ellipse
and the 95% one-at-a-time intervals of the mean average winter temperatures for Bern
and Davos.

Figure 5.6: 95% confidence ellipse and the 95% one-at-a-time intervals. Data set: Cli-
mate Time Series, p. 1-3.

Although prior to sampling, the ith interval has probability 1− α of covering µi, we
do not know what to assert, in general, about the probability of all intervals containing
their respective µi’s. As we have pointed out, this probability is not 1−α. To guarantee
a probability of 1 − α that all of the statements about the component means hold
simultaneously, the individual intervals must be wider than the separate t-intervals; just
how much wider depends on both p and n, as well as on 1− α.
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Example. For 1− α = 0.95, n = 15, and p = 4, the multipliers of
√
sii/n are

√
(n− 1)p

(n− p) Fp,n−p(0.05) =

√
56

11
3.36 = 4.14

and tn−1(0.025) = 2.145, respectively. Consequently, the simultaneous intervals are
100(4.14−2.145)/2.145 = 93% wider than those derived from the one-at-a-time tmethod.

The T 2-intervals are too wide if they are applied to the p component means. To see
why, consider the confidence ellipse and the simultaneous intervals shown in Figure 5.5.
If µ1 lies in its T 2-interval and µ2 lies in its T 2-interval, then (µ1, µ2) lies in the rectangle
formed by these two intervals. This rectangle contains the confidence ellipse and more.
The confidence ellipse is smaller but has probability 0.95 of covering the mean vector
µ with its component means µ1 and µ2. Consequently, the probability of covering the
two individual means µ1 and µ2 will be larger than 0.95 for the rectangle formed by
the T 2-intervals. This result leads us to consider a second approach to making multiple
comparisons known as the Bonferroni method.

Bonferroni Method of Multiple Comparisons

Often, attention is restricted to a small number of individual confidence statements. In
these situations it is possible to do better than the simultaneous intervals of (5.13). If
the number m of specified component means µi or linear combinations a′µ = a1µ1 +
. . .+ apµp is small, simultaneous confidence intervals can be developed that are shorter
(more precise) than the simultaneous T 2-intervals. The alternative method for multiple
comparisons is called the Bonferroni method.

Suppose that confidence statements about m linear combinations a′1µ, . . . ,a
′
mµ are

required. Let Ci denote a confidence statement about the value of a′iµ with

P (Ci true) = 1− αi, i = 1, . . . ,m.

Then

P (all Ci true) = 1− P (at least one Ci false)

≥ 1−
m∑

i=1

P (Ci false) = 1−
m∑

i=1

(1− P (Ci true))

= 1− (α1 + . . .+ αm). (5.14)

Inequality (5.14) allows an investigator to control the overall error rate α1 + . . .+αm,
regardless of the correlation structure behind the confidence statements.

Let us develop simultaneous interval estimates for the restricted set consisting of the
components µi of µ. Lacking information on the relative importance of these compo-
nents, we consider the individual t-intervals

xi ± tn−1
(αi

2

)√sii
n
, i = 1, . . . ,m
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with αi = α/m. Since

P

(
X i ± tn−1

( α

2m

)√sii
n

contains µi

)
= 1− α

m
, i = 1, . . . ,m,

we have, from (5.14),

P

(
X i ± tn−1

( α

2m

)√sii
n

contains µi, all i

)
≥ 1− (α/m+ · · ·+ α/m)︸ ︷︷ ︸

m terms

= 1− α.

Therefore, with an overall confidence level greater than or equal to 1− α, we can make
the following m = p statements:

x1 − tn−1
(
α

2p

)√
s11
n
≤ µ1 ≤ x1 + tn−1

(
α

2p

)√
s11
n

...

xp − tn−1
(
α

2p

)√
spp
n
≤ µp ≤ xp + tn−1

(
α

2p

)√
spp
n
.

Example (Climate Series Europe, p. 1-3). Figure 5.7 shows the 95% confidence ellipse
as well as the 95% simultaneous T 2-intervals, one-at-a-time intervals and Bonferroni
simultaneous intervals for the mean average winter temperatures for Bern and Davos.

5.3 Large Sample Inference about a Population Mean

Vector

When the sample size is large, tests of hypotheses and confidence regions for µ can be
constructed without the assumption of a normal population. All large-sample inferences
about µ are based on a χ2-distribution. From (4.3), we know that

n(X − µ)′S−1(X − µ)

is approximately χ2 with p d.f. and thus,

P
(
n(X − µ)′S−1(X − µ) ≤ χ2

p(α)
)

= 1− α

where χ2
p(α) is the upper (100α)th percentile of the χ2

p-distribution.

Proposition 5.3.1. Let X1, . . . ,Xn be a random sample from a population with mean
µ and positive definite covariance matrix Σ. When n − p is large, the hypothesis H0 :
µ = µ0 is rejected in favor of H1 : µ 6= µ0, at a level of significance approximately α, if
the observed

n(x− µ0)
′S−1(x− µ0) > χ2

p(α). (5.15)
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Figure 5.7: 95% confidence ellipse and different confidence intervals (T 2: dashed, one-
at-a-time: dotted, Bonferroni: combined). Data set: Climate Time Series, p. 1-3.

Remark. Comparing the test in Proposition 5.3.1 with the corresponding normal theory
test in (5.6), we see that the test statistics have the same structure, but the critical
values are different. A closer examination reveals that both tests yield essentially the
same result in situations where the χ2-test of Proposition 5.3.1 is appropriate. This
follows directly from the fact that (n−1)p

n−p Fp,n−p(α) and χ2
p(α) are approximately equal

for n large relative to p.

Proposition 5.3.2. Let X1, . . . ,Xn be a random sample from a population with mean
µ and positive definite covariance matrix Σ. If n− p is large,

a′X ±
√
χ2
p(α)

√
a′Sa
n

will contain a′µ, for every a, with probability approximately 1 − α. Consequently, we
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can make the (1− α) simultaneous confidence statements

x1 ±
√
χ2
p(α)

√
s11
n

contains µ1

...

xp ±
√
χ2
p(α)

√
spp
n

contains µp

and, in addition, for all pairs (µi, µk), i, k = 1, . . . , p, the sample mean-centered ellipses

n(xi − µi, xk − µk)
(
sii sik

sik skk

)−1(
xi − µi
xk − µk

)
≤ χ2

p(α) contain (µi, µk).

5-17



6 Comparisons of Several
Multivariate Means

The ideas developed in Chapter 5 can be extended to handle problems involving the
comparison of several mean vectors. The theory is a little more complicated and rests
on an assumption of multivariate normal distribution or large sample sizes.

We will first consider pairs of mean vectors, and then discuss several comparisons
among mean vectors arranged according to treatment levels. The corresponding test
statistics depend upon a partitioning of the total variation into pieces of variation at-
tributable to the treatment sources and error. This partitioning is known as the multi-
variate analysis of variance (MANOVA).

1. Paired comparisons: Comparing measurements before the treatment with those
after the treatment.

2. Repeated measures design for comparing treatments: q treatments are compared
with respect to a single response variable. Each subject or experimental unit
receives each treatment once over successive periods of time.

3. Comparing mean vectors from two population: Consider a random sample of size
n1 from population 1 and a random sample of size n2 from population 2.

For instance, we shall want to answer the question whether µ1 = µ2. Also, if
µ1 − µ2 6= 0, which component means are different?

4. Comparing several multivariate population means.

6.1 Paired Comparisons

Measurements are often recorded under different sets of experimental conditions to see
whether the responses differ significantly over these sets. For example the efficacy of a
new campaign may be determined by comparing measurements before the “treatment”
with those after the treatment. In other situations, two or more treatments can be
administered to the same or similar experimental units, and responses can be compared
to assess the effects of the treatments.

One rational approach to comparing two treatments, is to assign both treatments to
the same units. The paired responses may then be analyzed by computing their differ-
ences, thereby eliminating much of the influence of extraneous unit-to-unit variation.

6.1.1 Univariate Case

In the univariate (single response) case, let Xj1 denote the response to treatment 1
(or the response before treatment), and let Xj2 denote the response to treatment 2 (or
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the response after treatment) for the jth trial. That is, (Xj1, Xj2) are measurements
recorded on the jth unit or jth pair of like units. The n differences

Dj := Xj1 −Xj2, j = 1, . . . , n

should reflect only the differential effects of the treatments. Given that the differences
Dj represent independent observations from an N(δ, σ2

d) distribution, the variable

t :=
D − δ
sd/
√
n

where

D =
1

n

n∑

j=1

Dj and s2d =
1

n− 1

n∑

j=1

(Dj −D)2

has a t-distribution with n − 1 d.f. Then a (1 − α) confidence interval for the mean
difference δ = E(Xj1 −Xj2) is given by the statement

d− tn−1
(α

2

) sd√
n
≤ δ ≤ d+ tn−1

(α
2

) sd√
n
.

Remark. When uncertainty about the assumption of normality exists, a nonparamet-
ric alternative to ANOVA called the Kruskal-Wallis test is available. Instead of using
observed values the Kruskal-Wallis procedure uses ranks and then compares the ranks
among the treatment groups.

6.1.2 Multivariate Case

Example (Bern-Chur-Zürich, p. 1-4). Consider the mean vectors for Bern and Zürich
of the four variables pressure, temperature, precipitation and sunshine duration. In the
paired case we take the differences of the annual values and the null hypothesis states,
that the difference vector is the zero vector (see Figure 6.1). It seems to be reasonable
to assume that all differences are statistically different from zero. This can be confirmed
with Hotelling’s T 2 test for paired samples.

Additional notation is required for the multivariate extension of the paired-comparison
procedure. It is necessary to distinguish between p responses, two treatments, and n
experimental units. We label the p responses within the jth unit as

X1j1 = variable 1 under treatment 1

X1j2 = variable 2 under treatment 1
...

X1jp = variable p under treatment 1

X2j1 = variable 1 under treatment 2
...

X2jp = variable p under treatment 2
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Figure 6.1: Boxplots of the paired differences of the four variables for Bern, Chur and
Zürich for the time period 1930-1960. Data set: Bern-Chur-Zürich, p. 1-4.

and the p paired-difference random variables become

Dj1 = X1j1 −X2j1

...

Djp = X1jp −X2jp.

Let D′j = (Dj1, . . . , Djp), and assume, for j = 1, , . . . , n, that

E(Dj) = δ = (δ1, . . . , δp)
′ and Cov(Dj) = Σd.

Proposition 6.1.1. Let the differencesD1, . . . ,Dn be a random sample from an Np(δ,Σd)
population. Then

T 2 = n(D − δ)′S−1d (D − δ) ∼ p(n− 1)

n− p Fp,n−p,

where

D =
1

n

n∑

j=1

Dj and Sd =
1

n− 1

n∑

j=1

(Dj −D)(Dj −D)′. (6.1)
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If n and n−p are both large, T 2 is approximately distributed as a χ2
p random variable,

regardless of the form of the underlying population of differences.

The condition δ = 0 is equivalent to “no average difference between the two treat-
ments.” For the ith variable, δi > 0 implies that treatment 1 is larger, on average, than
treatment 2.

Proposition 6.1.2. Given the observed differences d′j = (dj1, . . . , djp), j = 1, , . . . , n,
corresponding to the random variables Dj1, . . . , Djp, an α-level test of H0 : δ = 0 versus
H1 : δ 6= 0 for an Np(δ,Σd) population rejects H0 if the observed

T 2 = nd
′
S−1d d >

p(n− 1)

n− p Fp,n−p(α).

Here d and Sd are given by (6.1).
A (1− α) confidence region for δ consists of all δ such that

(d− δ)′S−1d (d− δ) ≤ p(n− 1)

n(n− p)Fp,n−p(α).

Also, (1−α) simultaneous confidence intervals for the individual mean differences δi
are given by

δi : di ±
√
p(n− 1)

n− p Fp,n−p(α)

√
s2di
n

where di is the ith element of d and s2di is the ith diagonal element of Sd.
For (n− p) large

p(n− 1)

n− p Fp,n−p(α) ∼ χ2
p(α)

and normality need not be assumed.
The Bonferroni (1 − α) simultaneous confidence intervals for the individual mean

differences are

δi : di ± tn−1
(
α

2p

)√
s2di
n
.

6.2 Comparing Mean Vectors from Two Populations

Example (Bern-Chur-Zürich, p. 1-4). Consider the mean vectors for Bern and Zürich
of the four variables pressure, temperature, precipitation and sunshine duration. In the
two populations case (unpaired case) the null hypothesis states, that the mean vectors
are the same (see Figure 6.2). Calculating Hotelling’s T 2 for unpaired observations
shows that the null hypothesis can be rejected. Considering the univariate tests we see
that only the mean temperatures differ whereas for pressure, precipitation and sunshine
duration no differences of the means can be found.
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Figure 6.2: Boxplots of the four variables for Bern, Chur and Zürich for the time period
1930-1960. Data set: Bern-Chur-Zürich, p. 1-4.

A T 2-statistic for testing the equality of vector means from two multivariate popu-
lations can be developed by analogy with the univariate procedure. This T 2-statistic is
appropriate for comparing responses from one set of experimental settings (population
1) with independent responses from another set of experimental settings (population 2).
The comparison can be made without explicitly controlling for unit-to-unit variability,
as in the paired-comparison case.

Consider a random sample of size n1 from population 1 and a sample of size n2 from
population 2. The observations on p variables can be arranged as follows:
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sample mean covariance matrix

Population 1:

x11, . . . ,x1n1 x1 =
1

n1

n1∑

j=1

x1j S1 =
1

n1 − 1

n1∑

j=1

(x1j − x1)(x1j − x1)
′

Population 2:

x21, . . . ,x2n2 x2 =
1

n2

n2∑

j=1

x2j S2 =
1

n2 − 1

n2∑

j=1

(x2j − x2)(x2j − x2)
′.

We want to make inferences about µ1 − µ2: is µ1 = µ2 and if µ1 6= µ2, which
component means are different? With a few tentative assumptions, we are able to
provide answers to these questions.

Assumptions concerning the Structure of the Data

1. The sample X11, . . . ,X1n1 , is a random sample of size n1 from a p-variate popu-
lation with mean vector µ1 and covariance matrix Σ1.

2. The sample X21, . . . ,X2n2 , is a random sample of size n2 from a p-variate popu-
lation with mean vector µ2 and covariance matrix Σ2.

3. Independence assumption: X11, . . . ,X1n1 , are independent of X21, . . . ,X2n2 .

We shall see later that, for large samples, this structure is sufficient for making
inferences about the p × 1 vector µ1 − µ2. However, when the sample sizes n1 and n2

are small, more assumptions are needed.

Further Assumptions when n1 and n2 are small

1. Both populations are multivariate normal.

2. Both samples have the same covariance matrix: Σ1 = Σ2.

Remark. The second assumption, that Σ1 = Σ2, is much stronger than its univariate
counterpart. Here we are assuming that several pairs of variances and covariances are
nearly equal.

When Σ1 = Σ2 = Σ we find that

n1∑

j=1

(x1j − x1)(x1j − x1)
′ is an estimate of (n1 − 1)Σ and

n2∑

j=1

(x2j − x2)(x2j − x2)
′ is an estimate of (n2 − 1)Σ.
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Consequently, we can pool the information in both samples in order to estimate the
common covariance Σ. We set

Spooled =

n1∑

j=1

(x1j − x1)(x1j − x1)
′ +

n2∑

j=1

(x2j − x2)(x2j − x2)
′

n1 + n2 − 2

=
n1 − 1

n1 + n2 − 2
S1 +

n2 − 1

n1 + n2 − 2
S2.

Since the independence assumption on p. 6-6 implies that X1 and X2 are indepen-
dent and thus Cov(X1,X2) = 0, it follows that

Cov(X1 −X2) = Cov(X1) + Cov(X2) =

(
1

n1

+
1

n2

)
Σ.

Because Spooled estimates Σ, we see that
(

1
n1

+ 1
n2

)
Spooled is an estimator of Cov(X1−

X2).

Proposition 6.2.1. If X11, . . . ,X1n1 is a random sample of size n1 from Np(µ1,Σ)
and X21, . . . ,X2n2 is an independent random sample of size n2 from Np(µ2,Σ), then

T 2 = (X1 −X2 − (µ1 − µ2))
′
[(

1

n1

+
1

n2

)
Spooled

]−1
(X1 −X2 − (µ1 − µ2))

is distributed as
(n1 + n2 − 2)p

n1 + n2 − p− 1
Fp,n1+n2−p−1.

Consequently

P

(
(X1 −X2 − (µ1 − µ2))

′
[(

1
n1

+ 1
n2

)
Spooled

]−1
(X1 −X2 − (µ1 − µ2)) ≤ c2

)

= 1− α

where

c2 =
(n1 + n2 − 2)p

n1 + n2 − p− 1
Fp,n1+n2−p−1(α).

6.2.1 Simultaneous Confidence Intervals

It is possible to derive simultaneous confidence intervals for the components of the vector
µ1 − µ2. These confidence intervals are developed from a consideration of all possible
linear combinations of the differences in the mean vectors. It is assumed that the parent
multivariate populations are normal with a common covariance Σ.
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Proposition 6.2.2. Let c2 = (n1+n2−2)p
n1+n2−p−1Fp,n1+n2−p−1(α). With probability 1− α

a′(X1 −X2)± c
√
a′
(

1

n1

+
1

n2

)
Spooleda

will cover a′(µ1 − µ2) for all a. In particular µ1i − µ2i will be covered by

(X1i −X2i)± c
√(

1

n1

+
1

n2

)
sii,pooled for i = 1, . . . , p.

6.2.2 Two-sample Situation when Σ1 6= Σ2

When Σ1 6= Σ2, we are unable to find a “distance” measure like T 2, whose distribution
does not depend on the unknown Σ1 and Σ2. However, for n1 and n2 large, we can
avoid the complexities due to unequal covariance matrices.

Proposition 6.2.3. Let the sample sizes be such that n1−p and n2−p are large. Then,
an approximate (1−α) confidence ellipsoid for µ1−µ2 is given by all µ1−µ2 satisfying

(x1 − x2 − (µ1 − µ2))
′
(

1

n1

S1 +
1

n2

S2

)−1
(x1 − x2 − (µ1 − µ2)) ≤ χ2

p(α),

where χ2
p(α) is the upper (100α)th percentile of a chi-square distribution with p d.f.

Also, (1−α) simultaneous confidence intervals for all linear combinations a′(µ1−µ2)
are provided by

a′(µ1 − µ2) belongs to a′(x1 − x2)±
√
χ2
p(α)

√
a′
(

1

n1

S1 +
1

n2

S2

)
a.

6.3 Comparing Several Multivariate Population Means

(One-way MANOVA)

Often, more than two populations need to be compared. Multivariate Analysis of Vari-
ance (MANOVA) is used to investigate whether the population mean vectors are the
same and, if not, which mean components differ significantly.

We start with random samples, collected from each of g populations:

Population 1: X11,X12, . . . ,X1n1

Population 2: X21,X22, . . . ,X2n2

...

Population g: Xg1,Xg2, . . . ,Xgng
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Assumptions about the Structure of the Data for One-way MANOVA

1. X l1,X l2, . . . ,X lnl
, is a random sample of size nl from a population with mean µl,

l = 1, 2, . . . , g. The random samples from different populations are independent.

2. All populations have a common covariance matrix Σ.

3. Each population is multivariate normal.

Condition 3 can be relaxed by appealing to the central limit theorem when the sample
sizes nl are large.

A review of the univariate analysis of variance (ANOVA) will facilitate our discussion
of the multivariate assumptions and solution methods.

6.3.1 Summary of Univariate ANOVA

Example (Bern-Chur-Zürich, p. 1-4). In Figure 6.2 we get an overview on the annual
sunshine duration for Bern, Chur and Zürich for the time period 1930-1960. We observe
that the sample median is higher for Bern than for Chur and Zürich, but the differences
do not seem to be large. The ANalysis Of VAriance (ANOVA) is the statistical tool
to check whether the population means of the sunshine duration are the same for all
stations or not.

Assume that Xl1, . . . , Xlnl
is a random sample from an N(µl, σ

2) population, l =
1, . . . , g, and that the random samples are independent. Although the null hypothesis of
equality of means could be formulated as µ1 = . . . = µg, it is customary to regard µl as
the sum of an overall mean component, such as µ, and a component due to the specific
population. For instance, we can write

µl = µ+ (µl − µ)︸ ︷︷ ︸
=τl

.

Populations usually correspond to different sets of experimental conditions, and there-
fore, it is convenient to investigate the deviations τl associated with the lth population.
The notation

µl = µ + τl

lth population overall lth population

mean mean treatment effect

(6.2)

leads to a restatement of the hypotheses of equality of means. The null hypothesis
becomes

H0 : τ1 = . . . = τg = 0.
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The response Xlj, distributed as N(µ+ τl, σ
2), can be expressed in the form

Xlj = µ + τl + elj

overall treatment random

mean effect error

(6.3)

where the elj are independent N(0, σ2) random variables.
Motivated by the decomposition in (6.3), the analysis of variance is based upon an

analogous decomposition of the observations

xlj = x + (xl − x) + (xlj − xl)

observation overall estimated residual

sample mean treatment effect

(6.4)

where x is an estimate of µ, τ̂l = (xl−x) is an estimate of τl, and (xlj−xl) is an estimate
of the error elj.

From (6.4) we calculate (xlj − x)2 and find

(xlj − x)2 = (xl − x)2 + (xlj − xl)2 + 2(xl − x)(xlj − xl)
∑

j

:

nl∑

j=1

(xlj − x)2 = nl(xl − x)2 +

nl∑

j=1

(xlj − xl)2

∑

l

:

g∑

l=1

nl∑

j=1

(xlj − x)2

︸ ︷︷ ︸
total (corrected) SS

=

g∑

l=1

nl(xl − x)2

︸ ︷︷ ︸
between (samples) SS

+

g∑

l=1

nl∑

j=1

(xlj − xl)2

︸ ︷︷ ︸
within (samples) SS

The calculations of the sums of squares and the associated degrees of freedom are
conveniently summarized by an ANOVA table (see Table 6.1).

Table 6.1: ANOVA table for comparing univariate population means

Sources of variation Sum of squares (SS) Degrees of freedom

Treatments SStr =

g∑

l=1

nl(xl − x)2 g − 1

Residual (error) SSres =

g∑

l=1

nl∑

j=1

(xlj − xl)2
g∑

l=1

nl − g

Total (corrected for the mean) SScor =

g∑

l=1

nl∑

j=1

(xlj − x)2
g∑

l=1

nl − 1
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The F -test rejects H0 : τ1 = . . . = τg = 0 at level α if

F =
SStr/(g − 1)

SSres/(
∑g

l=1 nl − g)
> Fg−1,∑nl−g(α)

where Fg−1,∑nl−g(α) is the upper (100α)th percentile of the F -distribution with g − 1
and

∑
nl− g d.f. This is equivalent to rejecting H0 for large values of SStr/SSres or for

large values of 1+SStr/SSres. This statistic appropriate for a multivariate generalization
rejects H0 for small values of the reciprocal

1

1 + SStr/SSres
=

SSres
SSres + SStr

.

Multiple Comparisons of Means

Source: Schuenemeyer and Drew (2011), pp. 87-90.
After determining that there is a statistically significant difference between popula-

tion means, the investigator needs to determine where the difference occur. The concept
of a two-sample t-test was introduced earlier. At this point it may be reasonable to ask:
Why not use it? The problem is that the probability of rejecting the null hypothesis sim-
ply by chance (where real differences between population means fail to exist) increases as
the number of pairwise tests increase. It is difficult to determine what level of confidence
will be achieved for claiming that all statements are correct. To overcome this dilemma,
procedures have been developed for several confidence intervals to be constructed in such
a manner that the joint probability that all the statements are true is guaranteed not to
fall below a predetermined level. Such intervals are called multiple confidence intervals
or simultaneous confidence intervals. Three methods are often discussed in literature,
which will be summarized here.

Bonferronis Method Bonferronis method is a simple procedure that can be applied
to equal and unequal sample sizes. If a decision is made to make m pairwise comparisons,
selected in advance, the Bonferroni method requires that the significance level on each
test be α/m. This ensures that the overall (experiment wide) probability of making an
error is less than or equal to α. Comparisons can be made on means and specified linear
combinations of means (contrasts). Bonferronis method is sometimes called the Dunn
method. A variant on the Bonferroni approach is the Sidak method, which yields slightly
tighter confidence bounds. If the treatments are to be compared against a control group,
Dunnetts test should be used. Clearly, the penalty that is paid for using Bonferronis
method is the increased difficulty of rejecting the null hypothesis on a single comparison.
The advantage is protection against an error when making multiple comparisons.

Tukeys Method Tukey’s method provides (1− α) simultaneous confidence intervals
for all pairwise comparisons. Tukeys method is exact when sample sizes are equal and
is conservative when they are not. As in the Bonferroni method, the Tukey method
makes it more difficult to reject H0 on a single comparison, thereby preserving the a
level chosen for the entire experiment.
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Scheffés Method Scheffé’s method applies to all possible contrasts of the form

C =
k∑

i=1

ciµi

where
∑k

i=1 ci = 0 and k is the number of treatment groups. Thus, in theory an infinite
number of contrasts can be defined. H0 is rejected if and only if at least one interval for
a contrast does not contain zero.

Discussion of Multiple Comparison Procedures If H0 in an ANOVA is rejected,
it is proper to go to a multiple comparison procedure to determine specific differences. On
the other side Mendenhall and Sincich (2012) recommends to avoid conducting multiple
comparisons of a small number of treatment means when the corresponding ANOVA
F -test is nonsignificant; otherwise, confusing and contradictory results may occur.

An obvious question is, “Which procedure should I pick?” The basic idea is to have
the narrowest confidence bounds for the entire experiment (set of comparisons), con-
sistent with the contrasts of interest. Equivalently, in hypothesis-testing parlance, it is
desirable to make it as easy as possible to reject H0 on a single comparison while preserv-
ing a predetermined significance level for the experiment. If all pairwise comparisons are
of interest, the Tukey method is recommended; if only a subset is of interest, Bonferronis
method is a better choice. If all possible contrasts are desired, Scheffés method should
be used. However, because all possible contrasts must be considered in Scheffés method,
rejecting the null hypothesis is extremely difficult. As with most statistical procedures,
no single method works best in all situations.

Further reading. Mendenhall and Sincich (2012), pp. 671–692.

6.3.2 Multivariate Analysis of Variance (MANOVA)

Example (Bern-Chur-Zürich, p. 1-4). In addition to ANOVA we extend the analysis
to more than one variable, to the Multivariate ANalysis Of VAriance (MANOVA). The
null hypothesis states that the population mean vectors including the variables pressure,
temperature, precipitation and sunshine duration for the three stations are the same.
Figure 6.2, p. 6-5, gives a visual indication of possible differences of the population
means.

Paralleling the univariate reparameterization, we specify the MANOVA model:

Definition 6.3.1. MANOVA model for comparing g population mean vectors:

X lj = µ+ τ l + elj, j = 1, . . . , nl, l = 1, . . . , g, (6.5)

where elj are independent Np(0,Σ) variables. Here the parameter vector µ is an overall
mean (level), and τ l represents the lth treatment effect with

g∑

l=1

nlτ l = 0.
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According to the model in (6.5), each component of the observation vector X lj

satisfies the univariate model (6.3). The errors for the components of X lj are correlated,
but the covariance matrix Σ is the same for all populations.

A vector of observations may be decomposed as suggested by the model. Thus,

xlj = x + (xl − x) + (xlj − xl)

observation overall sample estimated treatment residual

mean µ̂ effect τ̂ l êlj

(6.6)

The decomposition in (6.6) leads to the multivariate analog of the univariate sum of
squares breakup in (6.5):

g∑

l=1

nl∑

j=1

(xlj − x)(xlj − x)′ =

g∑

l=1

nl(xl − x)(xl − x)′ +

g∑

l=1

nl∑

j=1

(xlj − xl)(xlj − xl)′

total (corrected) SS between (samples) SS within (samples) SS

(6.7)
The within sum of squares and cross products matrix can be expressed as

W :=

g∑

l=1

nl∑

j=1

(xlj − xl)(xlj − xl)′

=

g∑

l=1

(nl − 1)Sl,

where Sl is the sample covariance matrix for the lth sample. This matrix is a general-
ization of the (n1 + n2 − 2)Spooled matrix encountered in the two-sample case.

Analogous to the univariate result, the hypothesis of no treatment effects,

H0 : τ 1 = . . . = τ g = 0

is tested by considering the relative sizes of the treatment and residual sums of squares
and cross products. Equivalently, we may consider the relative sizes of the residual
and total (corrected) sum of squares and cross products. Formally, we summarize the
calculations leading to the test statistic in a MANOVA table.

This table is exactly of the same form, component by component, as in the ANOVA
table, expect that squares are replaced by their vector counterparts.

One test of H0 : τ 1 = . . . = τ g = 0 involves generalized variances. We reject H0 if
the ratio of generalized variances

Λ? =
|W|

|B + W| Wilks’ lambda

is too small. The exact distribution of Λ? can be derived for the special cases listed in
Table 6.3. For other cases and large sample sizes, a modification of Λ? due to Bartlett
can be used to test H0.
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Table 6.2: MANOVA table for comparing population mean vectors

Sources of variation Matrix of Sum of squares (SS) Degrees of freedom

and cross products

Treatment B =

g∑

l=1

nl(xl − x)(xl − x)′ g − 1

Residual (Error) W =

g∑

l=1

nl∑

j=1

(xlj − xl)(xlj − xl)′
g∑

l=1

nl − g

Total B + W =

g∑

l=1

nl∑

j=1

(xlj − x)(xlj − x)′
g∑

l=1

nl − 1

Remark. There are other statistics for checking the equality of several multivariate
means, such as Pillai’s statistic, Lawley-Hotelling and Roy’s largest root.

Remark. Bartlett has shown that if H0 is true and
∑
nl = n is large,

−
(
n− 1− p+ g

2

)
ln Λ?

has approximately a chi-square distribution with p(g−1) d.f. Consequently, for
∑
nl = n

large, we reject H0 at significance level α if

−
(
n− 1− p+ g

2

)
ln Λ? > χ2

p(g−1)(α),

where χ2
p(g−1)(α) is the upper (100α)th percentile of a chi-square distribution with p(g−1)

d.f.

6.3.3 Simultaneous Confidence Intervals for Treatment Effects

When the hypothesis of equal treatment effects is rejected, those effects that led to
the rejection of the hypothesis are of interest. For pairwise comparisons the Bonferroni
approach can be used to construct simultaneous confidence intervals for the components
of the differences

τ k − τ l or µk − µl.
These intervals are shorter than those obtained for all contrasts, and they require critical
values only for the univariate t-statistic.

Proposition 6.3.2. Let n =
∑g

k=1 nk. For the model in (6.5), with confidence at least
(1− α), τki − τli belongs to

xki − xli ± tn−g
(

α

pg(g − 1)

)√
wii
n− g

(
1

nk
+

1

nl

)

for all components i = 1, . . . , p and all differences l < k = 1, . . . , g. Here wii is the ith
diagonal element of W.
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Table 6.3: Distribution of Wilks’ Lambda Λ?. Source: Johnson and Wichern (2007).

6.3.4 Testing for Equality of Covariance Matrices

One of the assumptions made when comparing two or more multivariate mean vectors
is that the covariance matrices of the potentially different populations are the same.
Before pooling the variation across samples to form a pooled covariance matrix when
comparing mean vectors, it can be worthwhile to test the equality of the population
covariance matrices. One commonly employed test for equal covariance matrices is
Box’s M -test (see Johnson and Wichern (2007) p. 311).

With g populations, the null hypothesis is

H0 : Σ1 = . . . = Σg = Σ,

where Σl is the covariance matrix for the lth population, l = 1, . . . , g, and Σ is the
presumed common covariance matrix. The alternative hypothesis H1 is that at least two
of the covariance matrices are not equal.

Remark. Box’s χ2 approximation works well if for each group l, l = 1, . . . , g, the sample
size nl exceeds 20 and if p and g do not exceed 5.

Remark. Box’s M -test is routinely calculated in many statistical computer packages that
do MANOVA and other procedures requiring equal covariance matrices. It is known that
the M -test is sensitive to some forms of non-normality. However, with reasonably large
samples, the MANOVA tests of means or treatment effects are rather robust to non-
normality. Thus the M -test may reject H0 in some non-normal cases where it is not
damaging to the MANOVA tests. Moreover, with equal sample sizes, some differences
in covariance matrices have little effect on the MANOVA test. To summarize, we may
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decide to continue with the usual MANOVA tests even though the M -test leads to
rejection of H0.
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